Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T04:31:49.442Z Has data issue: false hasContentIssue false

Structural analysis of fertilization in the fish Brycon orbignyanus

Published online by Cambridge University Press:  01 May 2009

Luciana Nakaghi Ganeco*
Affiliation:
Departamento de Morfologia e Fisiologia Animal, UNESP–São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900, Jaboticabal, SP, Brazil. Aquaculture Center (CAUNESP)–Jaboticabal-SP, Brazil.
Irene Bastos Franceschini-Vicentini
Affiliation:
Aquaculture Center (CAUNESP)–Jaboticabal-SP, Brazil. Depto. Ciências Biológicas, Faculdade de Ciências–UNESP, Bauru-SP, Brazil.
Laura Satiko Okada Nakaghi
Affiliation:
Aquaculture Center (CAUNESP)–Jaboticabal-SP, Brazil. Depto. Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias–UNESP, Jaboticabal-SP, Brazil.
*
All correspondence to: L. Nakaghi Ganeco. Departamento de Morfologia e Fisiologia Animal, UNESP–São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900, Jaboticabal, SP, Brazil. Tel:/Fax: +55 16 3209 2654. e-mail: [email protected]

Summary

In the present work, we analyzed the structure of oocytes and fertilized eggs of the piracanjuba fish (Brycon orbignyanus) under light and scanning electron microscopy. After inducing spawning, samples were collected at the moment of oocyte extrusion, when oocytes and semen were mixed (time 0), as well as at 10, 20 and 30 s after mixing, every minute up to 10 min, and then at 15 and 20 min. The oocytes are spherical, translucent and greenish with a mean diameter of 1.3 ± 0.11 mm. During the extrusion, cytoplasmic movement was observed in eggs towards the micropyle, characterizing the animal pole. At the moment of fertilization, the cortical cytoplasm showed a higher concentration of cortical alveoli at the animal pole than at the vegetal pole. The cortical alveoli breakdown promoted the elevation of the chorion with a consequent increase in egg diameter (1.95 ± 0.08 mm). The penetration of the spermatozoon promotes the formation of a fertilization cone of spherical external structure, which obstructs the opening of the micropyle. This structure acts as a main mechanism to avoid polyspermy, intercepting the access of supernumerary spermatozoa. Such studies about the reproductive biology of fish are important to species survival and conservation programmes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, V.C., Gupta, S. & Fluck, R.A. (1993). Ooplasmic segregation in the medaka (Oryzias latipes) egg. Biol. Bull. 184, 115–24.Google Scholar
Andrade-Talmelli, E.F., Kavamoto, E.T., Romagosa, E. & Fenerich-Verani, N. (2001). Embryonic and larval development of the “piabanha,” Brycon insignis, Steindachner, 1876 (Pisces, Characidae). Bol. Inst. Pesca. 27 (1), 21–8.Google Scholar
Bancroft, J.D. & Gamble, M. (2006). Theory and Practice of Histological Techniques. Churchill Livingstone (Elsevier). 5th ed. 796 pp.Google Scholar
Bazzoli, N. & Godinho, H.P. (1994). Cortical alveoli in oocytes of freshwater neotropical teleost fish. Boll. Zool. 61, 301–8.CrossRefGoogle Scholar
Bern, O. & Avtalion, R.R. (1990). Some morphological aspects of fertilization in tilápias. J. Fish Biol. 36, 375–81.Google Scholar
Brummett, A.R. & Dumont, J.N. (1979). Initial stages of sperm penetration into the egg of Fundulus heteroclitus. J. Exp. Zool. 210, 417–34.CrossRefGoogle Scholar
Eckmann, R. (1984). Induced reproduction in Brycon cf. erythropterus. Aquaculture 38, 379–82.CrossRefGoogle Scholar
Faustino, F., Nakaghi, L.S.O., Marques, C., Makino, L.C. & Senhorini, J.A. (2007). Fertilização e desenvolvimento embrionário: morfometria e análise estereomicroscópica dos ovos dos híbridos surubins (pintado, Pseudoplatystoma coruscans × cachara, Pseudoplatystoma fasciatum). Acta Sci. Biol. Sci. 29 (1), 4955.CrossRefGoogle Scholar
Freire-Brasil, D., Nakaghi, L.S.O., Santos, H.S.L., Grassiotto, I.Q. & Foresti, F. (2002). Estudo morfológico dos primeiros momentos da fertilização em curimbatá Prochilodus lineatus (Valenciennes, 1836). CIVA 2002 (http://www.civa2002.org), pp. 733–47.Google Scholar
Ganeco, L.N. & Nakaghi, L.S.O. (2003). Morfologia da superfície dos ovócitos e caracterização da micrópila de piracanjuba, Brycon orbignyanus, sob microscopia eletrônica de varredura. Acta Sci. Biol. Sci. 25, 227–31.Google Scholar
Ginsburg, A.S. (1961). The block to polyspermy in sturgeon and trout with special reference to the role of cortical granules (alveoli). J. Embryol. Expt. Morph. 9, 173–90.Google Scholar
Hart, N.H. (1990). Fertilization in teleost fishes: mechanisms of sperm–egg interactions. Int. Rev. Cytol. 121, 166.CrossRefGoogle ScholarPubMed
Hart, N.H. & Donovan, M. (1983). Fine structure of the chorion and site of sperm entry in the egg of Brachydanio. J. Exp. Zool. 227, 277–96.Google Scholar
Iwamatsu, T. (1992). Egg activation. Fish Biology. J. Medaka. 4, 110.Google Scholar
Iwamatsu, T. (2000). Fertilization in fishes. In: Fertilization in Protozoa and Metazoa Animals (Tarín, J.J. & Cano, A. eds.) Springer–Verlag Berlin, Heidelberg. pp. 89145.Google Scholar
Iwamatsu, T. & Ohta, T. (1981). Scanning electron microscopic observation on sperm penetration in teleostean fish. J. Exp. Zool. 218, 261–77.CrossRefGoogle Scholar
Iwamatsu, T., Ohta, T., Oshima, E. & Sugiura, T. (1985). Requirement of extracellular calcium íons for the early fertilization events in the medaka egg. Dev. Growth Differ. 27, 751–62.CrossRefGoogle ScholarPubMed
Iwamatsu, T., Onitake, K., Yoshimoto, Y. & Hiramoto, Y. (1991). Time sequence of early events in fertilization in the Medaka egg. Dev. Growth Differ. 33 (50), 479–90.Google Scholar
Iwamatsu, T., Ishijima, & , S., Nakashima, S. (1993). Movement of spermatozoa and changes in micropyles during fertilization in medaka eggs. J. Exp. Zool. 266, 5764.CrossRefGoogle Scholar
Kimmel, C.B., Ballard, W.W., Kimmel, S.R. & Ullmann, B. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253310.Google Scholar
Kobayashi, W. & Yamamoto, T. (1981). Fine structure of the micropylar apparatus of the chum salmon egg, with a discussion of the mechanism for blocking polyspermy. J. Exp. Zool. 217, 265–75.CrossRefGoogle Scholar
Kobayashi, W. & Yamamoto, T.S. (1985). Fine structure of the micropylar cell and its change during oocyte maturation in the chum salmon egg, Oncorhynchus keta. J. Morph. 184, 263–76.CrossRefGoogle ScholarPubMed
Kobayashi, W. & Yamamoto, T.S. (1987). Light and electron microscopic observations of sperm entry in the chum Salmon egg. J. Exp. Zool. 243, 311–22.CrossRefGoogle Scholar
Kudo, S. (1980). Sperm penetration and the formation of a fertilization cone in the common carp egg. Dev. Growth Differ. 22 (3), 403–14.Google Scholar
Kudo, S., Linhart, O. & Billard, R. (1994). Ultrastructural studies of sperm penetration in the egg of the European catfish, Silurus glanis. Aquat. Living Resour. 7, 93–8.CrossRefGoogle Scholar
Laale, W.H. (1980). The perivitelline space and egg envelopes of bony fishes: a review. Copeia. 2, 210–26.Google Scholar
Linhart, O. & Kudo, S. (1997). Surface ultrastructure of paddlefish egg before and after fertilization. J. Fish Biol. 51, 573–82.Google Scholar
Lönning, S., Kjorsvik, E. & Davenport, J. (1984). The hardening process of the chorion of the cod, Gadus morhua L., and lampsucker, Cycloperus lumpus L. J. Fish Biol. 24, 505–22.CrossRefGoogle Scholar
Marques, C., Nakaghi, L.S.O., Faustino, F., Ganeco, L.N. & Senhorini, J.A. (2008). Observations of the embryonic development in Pseudoplatystoma coruscans (Siluriformes: Pimelodidae) under light and scanning electron microscopy. Zygote (Cambridge) (in press).Google Scholar
Moore, K.L. (2001). Embriologia Clínica. Quarta edição. Rio de Janeiro: Guanabara Koogan S.A.Google Scholar
Nakaghi, L.S.O., Marques, C., Faustino, F., Ganeco, L.N. & Senhorini, J.A. (2006). Desenvolvimento embrionário do dourado (Salminus brasiliensis) por meio de microscopia eletrônica de varredura. Bol. Tec. CEPTA, 19, 919.Google Scholar
Nakatani, K., Agostinho, A.A., Baumgartner, G., Bialetzki, A., Sanches, P.V. & Cavicchioli, M. (1999). Ovos e larvas de peixes de água doce, desenvolvimento e manual de identificação. Maringá: UEM Nupélia. 359 pp.Google Scholar
Ohta, T. (1985). Electron microscopy observations on sperm entry and pronuclear formation in naked eggs of the rose bitterling in polyspermic fertilization. J. Exp. Zool. 234, 273–81.Google Scholar
Ohta, T. (1991). Initial stages of sperm–egg fusion in the freshwater teleost, Rhodeus ocellatus ocellatus. Anat. Rec. 229, 195202.Google Scholar
Ohta, T. & Nashirozawa, C. (1996). Sperm penetration and transformation of sperm entry site in egg of the freshwater teleost Rhodeus ocellatus ocellatus. J. Morph. 229, 191200.Google Scholar
Ohta, T., Iwamatsu, T., Tanaka, M. & Yashimoto, Y. (1990). Cortical alveolus breakdown in the eggs of the freshwater teleost Rhodeus ocellatus ocellatus. Anat. Rec. 227, 486–96.Google Scholar
Paiva, M.P. (1982). Grandes Represas do Brasil. 292 pp. Brasília: Editerra.Google Scholar
Reynalte-Tataje, D., Zaniboni-Filho, E. & Esquivel, J.R. (2004). Embryonic and larvae development of piracanjuba, Brycon orbignyanus Valenciennes, 1849 (Pisces, Characidae). Acta Sci. 26 (1), 6771.Google Scholar
Romagosa, E., Narahara, M.Y. & Fenerich-Verani, N. (2001). Stages of embryonic development of the “matrinxã,” Brycon cephalus (Pisces, Characidae). Bol. Inst. Pesca. 27 (1), 2732.Google Scholar
Schatten, G. (1999). Fertilization. In: Encyclopedia of Reproduction vol. 2. London: Academic Press.Google Scholar
Vaz, M.M., Torquato, V.C. & Barbosa, N.D.C. (Org.) (2000). Guia Ilustrado de peixes da bacia do Rio Grande. Belo Horizonte: CEMIG/CETEC.Google Scholar
Vazzoler, A.E.A.M. (1996). Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá: EDUEM. 169 pp.Google Scholar