Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T13:25:06.907Z Has data issue: false hasContentIssue false

The spindle apparatus in early embryonic divisions of Ephestia Kuehniella Z. (Pyralidae, Lepidoptera) is formed by alignment of minispindles

Published online by Cambridge University Press:  26 September 2008

Klaus Werner Wolf*
Affiliation:
Institut für Biologie der Medizinischen, Universitiät zu Lübeck, Lübeck, Germany
*
Klaus W. Wolf, Institut für Biologie der Medizinischen Universtät, Ratzeburger Allee 160, D-23538 Lübeck, Germany.

Summary

Spindles were isolated from deposited eggs of the Mediterranean mealmoth, Ephestia Kuehniella. Their structure and development were studied using anti-tubulin immunofluorescence. The microtubules were labelled with three different monoclonal antibodies. These were directed against β-tubulin, tyrosinated α-tubulin and acetylated α-tubulin. Significant differences in the staining behaviour were not detected with the three antibodies. An unusual mode of spindle formation was observed during the first mitotic division after fusion of the pronuclei. Several of the ensuing embryonic divisions may show the same phenomenon. Prophase of these divisions was characterised by an irregular arrangement of microtubules in the nuclear area. The microtubule mass in the nuclear area increased concomitantly with chromosome condensation. Microtubular foci, comparable to the forming asters of canonical spindles, were not detected. The formation of an orderly pattern in the microtubule mass was signalled by the appearance of minispindles apparently developing around individual chromosomes. Several minispindles subsequently aligned and formed metaphase-like entities within the nuclear area. The metaphase-like entities, in turn, aligned with one another and gave rise to a conventional bipolar metaphase spindle with small asters. The further development of the spindle was conventional. The chromosomes migrated towards the spindle poles and finally daughter nuclei formed. The anaphase and telophase spindles possessed both a prominent array of interzone microtubules and asters. The events in prophase of early embryonic mitosis of E. kuehniella may represent a rare case of chromosomeinduced spindle formation.

Type
Commentary
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfa, C.A. & Hyams, J.S. (1991). Microtubules in the fission yeast Schizosaccharomyces pombe contain only the tyrosinated from of α-tubulin. Cell Motil. Cytoskel. 18, 8693.CrossRefGoogle ScholarPubMed
Bauer, H. (1933). Die wachsenden Oocytenkerne einiger Insekten in ihrem Verhalten zur Nuklealfärbung. Z. Zellforsch. Mikrosk. Anat. 18, 254298.CrossRefGoogle Scholar
Bauer, H. (1967). Die kinestische Organisation der Lepidopteren-Chromosomen. Chromosoma, 22, 101–25.CrossRefGoogle Scholar
Chruch, K., Nicklas, B.R. & Lin, H.-P.P. (1986). Micromanipulated bivalents can trigger mini-spindle formation in Drosophila melanogaster spermatocyte cytoplasm. J. Cell Biol. 103, 2765–73.Google Scholar
Hayden, J.H., Bowser, S.S. & Rieder, C.L. (1990). Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J.Cell Biol. 111, 1039–45.CrossRefGoogle Scholar
Hiraoka, Y., Dernburg, A.F., Parmelee, S.J., Rykowski, M.C., Agard, D.A. & Sedat, J.W., (1993). The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J. Cell Biol. 120, 591600.CrossRefGoogle ScholarPubMed
Kilmartin, J.V., Wright, B. & Milstein, C. (1982). Rat monoclonal anti-tubulin antibodies derived by using a new non-secreting rat cell line. J. Cell Biol. 93, 576–82.CrossRefGoogle Scholar
Mandelbaum, I. (1980). Intercellular bridges and the fusome in the germ cells of the cecropia moth. J. Morphol. 166, 3750.CrossRefGoogle ScholarPubMed
Marec, F., Leutelt, J., Traut, W. & Wolf, K.W. (1993). Visualization of polyfusomes in gonads oa a moth, Ephestia Kuehniella Z. (Lepidoptera, Pyralidae), by a microspreading technique and electron microscopy. J. Insect Embryol. Morphol. 22, 487–96.CrossRefGoogle Scholar
Mazia, D. (1984). Centrosomes and mitotic poles. Exp. Cell Res. 153, 115.CrossRefGoogle ScholarPubMed
Murakami, A. & Imai, H.T. (1974). Cytological evidence for holocentric chromosomes of the silkworms, Bombyx mori and B. mandarina. Chromosoma 47, 167–78.CrossRefGoogle ScholarPubMed
Osborn, M. & Weber, K. (1982). Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin containing structures. Methods Cell Biol. 24, 97132.CrossRefGoogle ScholarPubMed
Piperno, G. & Fuller, M.T. (1985). Monoclonal antibodies specific for an acetylated form of α-tubulin recognise the antigen in cilia and flagella from a variety of organisms. J. Cell Biol. 101, 2085–94.CrossRefGoogle ScholarPubMed
Rasmussen, S.W. (1976). The meiotic prophase in Bombyx mori females analyzed by three-dimensional reconstructions of synaptonemal complexes. Chromosoma 54, 245–93.CrossRefGoogle ScholarPubMed
Rasmussen, S.W. (1977). The transformation of the synaptonemal complexes into the ‘elimination chromatin’ of Bombyx mori oocytes. Chromosoma 60, 205–21.CrossRefGoogle ScholarPubMed
Rieder, C.L. (1990). Formation of the astral mitotic spindle: ultrastructural basis for the centrosome-kinetochore interaction. Electron Microsc. Rev. 3, 269300.CrossRefGoogle ScholarPubMed
Ris, H. & Kleinfield, R. (1952). Cytochemical studies on the chromatin elimination in Solenobia (Lepidoptera). Chromosoma 5, 363–71.CrossRefGoogle Scholar
Sawin, K.E. & Mitchison, T.J. (1991). Mitotic spindle assembly by two different pathways in Vitro. J. Cell Biol. 112, 925–40.CrossRefGoogle ScholarPubMed
Schäffer, K. (1944). Zur Diagnose der Eliminationssubstanz bei der Eirefung von Schmetterlingen (Solenobia). Rev. Suisse Zool. 51, 437–41.Google Scholar
Schatten, G., Simerly, C., Asai, D.J., Szoke, E.E., Cooke, P. & Schatten, H. (1988). Acetylated α-tubulin in microtubules during mouse fertilization and early development. Dev. Biol. 130, 7489.CrossRefGoogle ScholarPubMed
Schatten, H., Thompson-Coffe, C., Coffe, G., Simerly, C. & Schatten, G. (1989). Centrosomes, centrioles, and post-translationally modified during fertilization. In: The Molecular Biology og Fertilization, ed. Schatten, G. & Schatten, H., pp. 189210.San Diego: Academic press.CrossRefGoogle Scholar
Seiler, J. (1964). Untersuchungen über die Entstehung der parthenogenese bei Solenobia triquetrella F.R.(Lepidoptera, Psychidae). V. Biologische und zytologische Beobachtungen zum Übergange von der diploiden zur tetraploiden Parthenogenese. Chromosoma 15, 503–39.CrossRefGoogle Scholar
Steffen, W., Fuge, H., Dietz, R., Bastmeyer, M. & Müller, G. (1986). Aster-free spindle poles in insect spermatocytes: evidence for chromosome-induced spindle formation? J. Cell Biol. 102, 1679–87.CrossRefGoogle ScholarPubMed
Traut, W. & Mosbacher, G.C. (1968). Geschlechtschromatin bei Lepidopteren. Chromosoma. 25, 343–56.CrossRefGoogle Scholar
Traut, W., Weith, A. & Traut, G. (1986). Structural mutants of the W chromosome in Ephestia (Insecta, Lepidoptera). Genetica. 70, 6979.CrossRefGoogle Scholar
Walker, R.A., O'Brien, E.T., Pryer, N.K., Soboeiro, M.F., Voter, W.A., Ericson, H.P. & Salmon, E.D. (1988). Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 1437–48.CrossRefGoogle ScholarPubMed
Webster, D.R. & Borisy, G.G. (1989). Microtubules are acetylated in domains that turn over slowly. J. Cell Sci. 92, 5765.CrossRefGoogle ScholarPubMed
Webster, D.R., Gundersen, G.G., Bulinski, J.C. & Borisy, G.C. (1987). Differential turnover of tyrosinated and detyrosinated microtubules. Proc. Natl. Acad. Sci. USA 84, 9040–44.CrossRefGoogle ScholarPubMed
Wolf, K.W. (1987). Cytology of Lepidoptera. I. The nuclear area in secondary oocytes of Ephestia Kuehnicella Z. contains remnants of the first division. Eur. J. Cell. 43, 223–9.Google Scholar
Wolf, K.W. (1992). Spindle membranes and microtubules are coordinately reduced in apyrene to eupyrene spermatocytes of Inachis io (Lepidoptera, Nymphalidae). J. Submicrosc. Cytol. Pathol. 24, 381–94.Google Scholar
Wolf, K.W. (1993). Centripetal movement of homologs occurs at the onset of anaphase A in primary oocytes of Ephestia kuehniella Z. (Phyralidae, Lepidoptera). Cell Motil. Cytoskel. 24, 200–4.CrossRefGoogle Scholar
Wolf, K.W. (1994). The unique structure of Lepidopteran spindles. Int. Rev. Cytol. 152 (in press).Google Scholar
Wolf, K.W. & Bastmeyer, M. (1991). Cytology of Lepidoptera V. The microtubule cytoskeleton in eupyrene spermatocytes of Ephestia kuehniella (Pyralidae), Inachis io (Nymphlidae), and Orgyia antiqua (Lymantriidae). Eur. J. Cell Biol. 55, 225–37.Google Scholar
Wolf, N., Regan, C.L. & Fuller, M.T. (1988). Temporal and spatial pattern of difference in microtubule behaviour during Drosophilia embryogenesis revealed by distribution of a tubulin isoform. Development. 102, 311–24.CrossRefGoogle Scholar
Zissler, D. (1992). From egg to pole cells: ultrastructural aspects of early cleavage and germ cell determination in insects. Microsc. Res. Tech. 22, 4974.CrossRefGoogle ScholarPubMed