Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T00:35:41.275Z Has data issue: false hasContentIssue false

Spent culture medium analysis from individually cultured bovine embryos demonstrates metabolomic differences

Published online by Cambridge University Press:  16 October 2017

Kayla J. Perkel
Affiliation:
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
Pavneesh Madan*
Affiliation:
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
*
All correspondence to: Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada. Tel: +1 519 824 4120. Fax: +1 519 767 1450. E-mail: [email protected]

Summary

Spent culture medium can provide valuable information regarding the physiological state of a bovine preimplantation embryos through non-invasive analysis of the sum/depleted metabolite constituents. Metabolomics has become of great interest as an adjunct technique to morphological and cleavage-rate assessment, but more importantly, in improving our understanding of metabolism. In this study, in vitro produced bovine embryos developing at different rates were evaluated using proton nuclear magnetic resonance (1H NMR). Spent culture medium from individually cultured embryos (2-cell to blastocyst stage) were divided into two groups based on their cleavage rate fast growing (FG) and slow growing (SG; developmentally delayed by 12–24 h), then analyzed by a 600 MHz NMR spectrometer. Sixteen metabolites were detected and investigated for sum/depletion throughout development. Data indicate distinct differences between the 4-cell SG and FG embryos for pyruvate (P < 0.05, n = 9) and at the 16-cell stage for acetate, tryptophan, leucine/isoleucine, valine and histidine. Overall sum/depletion levels of metabolites demonstrated that embryos produced glutamate, but consumed histidine, tyrosine, glycine, methionine, tryptophan, phenylalanine, lysine, arginine, acetate, threonine, alanine, pyruvate, valine, isoleucine/leucine, and lactate with an overall trend of higher consumption of these metabolites by FG groups. Principal component analysis revealed distinct clustering of the plain medium, SG, and FG group, signifying the uniqueness of the metabolomic signatures of each of these groups. This study is the first of its kind to characterize the metabolomic profiles of SG and FG bovine embryos produced in vitro using 1H NMR. Elucidating differences between embryos of varying developmental rates could contribute to a better understanding of embryonic health and physiology.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, A., Marsal, S. & Julià, A. (2015). Analytical methods in untargeted metabolomics: state of the art in 2015. Front. Bioeng. Biotechnol. 3, 120.Google Scholar
Bajaj, N. & Sharma, N. (2011). Endocrine causes of early embryonic death: an overview. Curr. Res. Dairy Sci. 3, 124.Google Scholar
Bax, A. (1985). A spatially selective composite 90 degree radiofrequency pulse. J. Magn. Reson. 65, 142–5.Google Scholar
Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P. & Gutierrez-Adan, A (2008). Epigenetic differences between male and female bovine blastocysts produced in vitro . Physiol. Genomics 32, 264–72.Google Scholar
Booth, P.J., Humpherson, P.G., Watson, T.J. & Leese, H.J. (2005). Amino acid depletion and appearance during porcine preimplantation embryo development in vitro . Reproduction 130, 655–68.CrossRefGoogle ScholarPubMed
Botros, L., Sakkas, D. & Seli, E. (2008). Metabolomics and its application for non-invasive embryo assessment in IVF. Mol. Hum. Reprod. 14, 679–90.Google Scholar
Bouatra, S., Aziat, F., Mandal, R., Guo, A.C., Wilson, M.R., Knox, C., Bjorndahl, T.C., Krishnamurthy, R., Saleem, F., Liu, P., Dame, Z.T., Poelzer, J., Huynh, J., Yallou, F.S., Psychogios, N., Dong, E., Bogumil, R., Roehring, C. & Wishart, D.S. (2013). The human urine metabolome. PLoS One 8, e73076–104.Google Scholar
Brison, D.R., Houghton, F.D., Falconer, D., Roberts, S.A., Hawkhead, J., Humpherson, P.G., Lieberman, B.A. & Leese, H.J. (2004). Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 19, 2319–24.Google Scholar
Brison, D.R. & Leese, H.J. (1991). Energy metabolism in late preimplantation rat embryos. J. Reprod. Fertil. 93, 245–51.Google Scholar
Butler, J. & Biggers, J. (1989). Assessing the viability of preimplantation embryos in vitro . Theriogenology 31, 115–26.Google Scholar
Collado-Fernandez, E., Picton, H. & Dumollard, R. (2012). Metabolism throughout follicle and oocyte development in mammals. Int. J. Dev. Biol. 56, 799808.CrossRefGoogle ScholarPubMed
Conaghan, J., Handyside, A., Winston, R. & Leese, H. (1993a). Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro . J. Reprod. Fertil. 99, 8795.Google Scholar
Conaghan, J., Hardy, K., Handyside, A., Winston, R.M. & Leese, H.J. (1993b). Selection criteria for human embryo transfer: a comparison of pyruvate uptake and morphology. J. Assist. Reprod. Genet. 10, 2130.Google Scholar
Cordova, A., Perreau, C., Uzbekova, S., Ponsart, C., Locatelli, Y. & Mermillod, P. (2014). Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells at early or late stage of preimplantation development. Theriogenology 81, 1163– 73.Google Scholar
De Souza, D.K., Salles, L.P. & Rosa e Silva, A.A.M. (2015). Aspects of energetic substrate metabolism of in vitro and in vivo bovine embryos. Brazilian J. Med. Biol. Res. 48, 191–7.Google Scholar
Desai, N.N., Goldstein, J., Rowland, D.Y. & Goldfarb, J.M. (2000). Morphological evaluation of human embryos and derivation of an embryo quality scoring system specific for day 3 embryos: a preliminary study. Hum. Reprod. 15, 2190–6.Google Scholar
Dey, S. (1981). Role of histamine in implantation: inhibition of histidine decarboxylase induces delayed implantation in the rabbit. Biol. Reprod. 24, 867–9.CrossRefGoogle ScholarPubMed
Dey, S. & Johnson, D. (1980). Histamine formation by mouse preimplantation embryos. J. Reprod. Fertil. 60, 457–60.Google Scholar
Dumoulin, J., Van Wissen, L., Menheere, P., Michiels, A., Geraedts, J. & Evers, J. (1997). Taurine acts as an osmolyte in human and mouse oocytes and embryos. Biol. Reprod. 56, 739–44.Google Scholar
Dunn, W.B., Bailey, N.J.C. & Johnson, H.E. (2005). Measuring the metabolome: current analytical technologies. Analyst 130, 606–25.Google Scholar
Edgar, D.H., Jericho, H., Bourne, H. & McBain, J.C. (2001). The influence of prefreeze growth rate and blastomere number on cryosurvival and subsequent implantation of human embryos. J. Assist. Reprod. Genet. 18, 135–8.Google Scholar
Edwards, L., Williams, D. & Gardner, D. (1998). Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum. Reprod. 13, 3441–8.Google Scholar
Eguchi, Y., Shimizu, S. & Tsujimoto, Y. (1997). Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 57, 1835–40.Google Scholar
Ellis, D.I., Dunn, W.B., Griffin, J.L., Allwood, J.W. & Goodacre, R. (2007). Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8, 1243–66.Google Scholar
Epstein, C. & Smith, S. (1973). Amino acid uptake and protein synthesis in preimplantation mouse embryos. Dev. Biol. 33, 171–84.CrossRefGoogle Scholar
Farin, P., Britt, J., Shaw, D. & Slenning, B. (1995). Agreement among evaluators of bovine embryos produced in vivo or in vitro . Theriogenology 44, 339–49.CrossRefGoogle ScholarPubMed
Favetta, L., Robert, C., St John, E., Betts, D. & King, W. (2004). p66Shc, but not p53, is involved in early arrest of in vitro-produced bovine embryos. Mol. Hum. Reprod. 10, 383–92.Google Scholar
Favetta, L.A., Madan, P., Mastromonaco, G.F., St, E.J., King, W.A. & Betts, D.H. (2007). The oxidative stress adaptor p66Shc is required for permanent embryo arrest in vitro . BMC Dev. Biol. 15, 115.Google Scholar
Fernandes Bressan, F., Fantinato-eto, P., Mamede Andrade, G., Rodrigues Sangalli, J., Vilar Sampaio, R., Perecin, F. & Vieira Meirelles, F. (2015). Challenges and perspectives to enhance cattle production via in vitro techniques: focus on epigenetics and cell-secreted vesicles. Ciência Rural 45, 1879–86.CrossRefGoogle Scholar
Fuhrer, T. & Zamboni, N. (2015). High-throughput discovery metabolomics. Curr. Opin. Biotechnol. 31, 73–8.Google Scholar
Gardner, D., Lane, M., Stevens, J., Schlenker, T. & Schoolcraft, W. (2000). Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73, 1155–8.Google Scholar
Gardner, D., Phil, D. & Wale, P. (2013). Analysis of metabolism to select viable human embryos for transfer. Fertil. Steril. 99, 1062–72.Google Scholar
Gardner, D.K. & Leese, H.J. (1987). Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J. Exp. Zool. 242, 103–5.Google Scholar
Gardner, D.K., Pawelczynski, M. & Trounson, A.O. (1996). Nutrient uptake and utilization can be used to select viable day 7 bovine blastocysts after cryopreservation. Mol. Reprod. Dev. 44, 472–5.Google Scholar
Goodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G. & Kell, D.B. (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22, 245–52.Google Scholar
Gott, A.L., Hardy, K., Winston, R.M. & Leese, H.J. (1990). Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum. Reprod. 5, 104–8.CrossRefGoogle ScholarPubMed
Hardy, K., Hooper, M., Handyside, A., Rutherford, A., Winston, R. & Leese, H. (1989). Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum. Reprod. 4, 188–91.Google Scholar
Herrero, J. & Meseguer, M. (2013). Selection of high potential embryos using time-lapse imaging: the era of morphokinetics. Fertil. Steril. 99, 1030–4.CrossRefGoogle ScholarPubMed
Hoover, L., Baker, A., Check, J., Lurie, D. & O'Shaughnessy, A. (1995). Evaluation of a new embryo-grading system to predict pregnancy rates following in vitro fertilization. Gynecol. Obstet. Invest. 40, 151–7.Google Scholar
Houghton, F.D., Hawkhead, J.A., Humpherson, P.G., Hogg, J.E., Balen, A.H., Rutherford, A.J. & Leese, H.J. (2002). Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 17, 9991005.Google Scholar
Hudgins, L., Mukerjee, S. & Dey, S. (1982). Preimplantation embryo development in the mouse: Role of histidine decarboxylase. Gamete Res. 6, 121–5.Google Scholar
Jolliffe, I. (1972). Discarding variables in a principal component analysis. Appl. Stat. 21, 160–73.Google Scholar
Kane, M. (1987). Minimal nutrient requirements for culture of one-cell rabbit embryos. Biol. Reprod. 37, 775–8.Google Scholar
Khatib, H., Huang, W., Wang, X., Tran, A.H., Bindrim, A.B., Schutzkus, V., Monson, R.L. & Yandell, B.S. (2009). Single gene and gene interaction effects on fertilization and embryonic survival rates in cattle. J. Dairy Sci. 92, 2238– 47.Google Scholar
Khurana, N.K. & Niemann, H. (2000). Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biol . Reprod. 62, 847–56.Google Scholar
Knowles, S., Jarrett, I., Filsell, O. & Ballard, F. (1974). Production and utilization of acetate in mammals. Biochem. J. 142, 401–11.Google Scholar
Kriat, M., Confort-Gouny, S., Vion-Dury, J., Sciaky, M., Viout, P. & Cozzone, P.J. (1992). Quantitation of metabolites in human blood serum by proton magnetic resonance spectroscopy. A comparative study of the use of formate and TSP as concentration standards. NMR Biomed. 5, 179–84.Google Scholar
Krisher, R., Lane, M. & Bavister, B. (1999). Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol. Reprod. 60, 1345–52.Google Scholar
Kumar, A., Kroetsch, T., Blondin, P. & Anzar, M. (2015). Fertility-associated metabolites in bull seminal plasma and blood serum: 1H nuclear magnetic resonance analysis. Mol. Reprod. Dev. 82, 123–31.Google Scholar
Lane, M. & Gardner, D. (1998). Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum. Reprod. 12, 991–7.Google Scholar
Lechniak, D., Pers-Kamczyc, E. & Pawlak, P. (2008). Timing of the first zygotic cleavage as a marker of developmental potential of mammalian embryos. Reprod. Biol. 8, 2342.CrossRefGoogle ScholarPubMed
Lee, Y.S.L., Thouas, G.A. & Gardner, D.K. (2015). Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Hum. Reprod. 30, 543–52.Google Scholar
Leese, H.J. (2002). Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays 24, 845–9.Google Scholar
Leese, H.J., Baumann, C.G., Brison, D.R., McEvoy, T.G. & Sturmey, R.G. (2008). Metabolism of the viable mammalian embryo: quietness revisited. Mol. Hum. Reprod. 14, 667–72.Google Scholar
Leese, H.J., Sturmey, R.G., Baumann, C.G. & McEvoy, T.G. (2007). Embryo viability and metabolism: obeying the quiet rules. Hum. Reprod. 22, 3047–50.Google Scholar
Liu, X., Kim, C., Yang, J., Jemmerson, R. & Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c . Cell 86, 147–57.Google Scholar
Lonergan, P., Khatir, H., Piumi, F., Rieger, D., Humblot, P. & Boland, M.P. (1999). Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. J. Reprod. Fertil. 117, 159–67.Google Scholar
Luna, M., Copperman, A., Duke, M., Ezcurra, D., Sandler, B. & Barritt, J. (2008). Human blastocyst morphological quality is significantly improved in embryos classified as fast on day 3 (≥10 cells), bringing into question current embryological dogma. Fertil. Steril. 89, 358–63.Google Scholar
Madan, P. (2011). Arrest of survive: a decision of the early preimplantation embryo that influences fertility. In Comprehensive Biotechnology (ed. Moo-Young, M.) pp. 469–76. Boston: Elsevier B.V. CrossRefGoogle Scholar
Mandal, R., Guo, A.C., Chaudhary, K.K., Liu, P., Yallou, F.S., Dong, E., Aziat, F. & Wishart, D.S. (2012). Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update. Genome Med. 4, 38.Google Scholar
Marhuenda-Egea, F., Gonsalvez-Alvarez, R., Martinez-Sabater, E., Lledo, B., Ten, J. & Bernabeu, R. (2010). improving human embryos selection in IVF: non-invasive metabolomic and chemometric approach. Metabolomics 7, 247–56.Google Scholar
Meseguer, M., Herrero, J., Tejera, A., Hilligsøe, K.M., Ramsing, N.B. & Remohí, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 26, 2658–71.Google Scholar
Mori, M., Otoi, T. & Suzuki, T. (2002). Correlation between the cell number and diameter in bovine embryos produced in vitro . Reprod. Domest. Anim. 37, 181–4.Google Scholar
Muñoz, M., Uyar, A., Correia, E., Díez, C., Fernandez-Gonzalez, A., Caamaño, J.N., Martínez-Bello, D., Trigal, B., Humblot, P., Ponsart, C., Guyader-Joly, C., Carrocera, S., Martin, D., Marquant Le Guienne, B., Seli, E. & Gomez, E. (2014). Prediction of pregnancy viability in bovine in vitro-produced embryos and recipient plasma with Fourier transform infrared spectroscopy. J. Dairy Sci. 97, 5497–507.CrossRefGoogle ScholarPubMed
Nel-Themaat, L. & Nagy, Z.P. (2011). A review of the promises and pitfalls of oocyte and embryo metabolomics. Placenta 3, 17.Google Scholar
Partridge, R.J. & Leese, H.J. (1996). Consumption of amino acids by bovine preimplantation embryos. Reprod. Fertil. Dev. 8, 945–50.Google Scholar
Perkel, K., Tscherner, A., Merrill, C., LaMarre, J. & Madan, P. (2015). The ART of selecting the best embryo: a review of early embryonic mortality and bovine embryo viability assessment methods. Mol. Reprod. Dev. 82, 822–38.Google Scholar
Piñero-Sagredo, E., Nunes, S., de los Santos, M.J., Celda, B. & Esteve, V. (2010). NMR metabolic profile of human follicular fluid. NMR Biomed. 14, 679–90.Google Scholar
Pudakalakatti, S., Uppangala, S., D'Souza, F., Kalthur, G., Kumar, P., Adiga, S. & Atreya, H. (2013). NMR studies of preimplantation embryo metabolism in human assisted reproductive techniques: a new biomarker for assessment of embryo implantation potential. NMR Biomed. 26, 20–7.Google Scholar
Puissant, F., Van Rysselberge, M., Barlow, P., Deweze, J. & Leroy, F. (1987). Embryo scoring as a prognostic tool in IVF treatment. Hum. Reprod. 2, 705–8.Google Scholar
Rosenkrans, C.F., Zeng, G.Q., MCNamara, G.T., Schoff, P.K. & First, N.L. (1993). Development of bovine embryos in vitro as affected by energy substrates. Biol. Reprod. 49, 459–62.Google Scholar
Sakkas, D., Percival, G., D'Arcy, Y., Sharif, K. & Afnan, M. (2001). Assessment of early cleaving in vitro fertilized human embryos at the 2-cell stage before transfer improves embryo selection. Fertil. Steril. 76, 1150–6.Google Scholar
Salumets, A., Hyden-Granskog, C., Makinen, S., Suikkari, A., Tiitinen, A. & Tuuri, T. (2003). Early cleavage predicts the viability of human embryos in elective single embryo transfer procedures. Hum. Reprod. 18, 821–5.Google Scholar
Sánchez-Ribas, I., Riqueros, M., Vime, P., Puchades-Carrasco, L., Jönsson, T., Pineda-Lucena, A., Ballesteros, A., Domínguez, F. & Simón, C. (2012). Differential metabolic profiling of non-pure trisomy 21 human preimplantation embryos. Fertil. Steril. 98, 1157–64.Google Scholar
Seli, E., Botros, L., Sakkas, D. & Burns, D.H. (2008). Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil. Steril. 90, 2183–9.Google Scholar
Seli, E., Bruce, C., Botros, L., Henson, M., Roos, P., Judge, K., Hardarson, T., Ahlström, A., Harrison, P., Henman, M., Go, K., Acevedo, N., Siques, J., Tucker, M. & Sakkas, D. (2011). Receiver operating characteristic (ROC) analysis of day 5 morphology grading and metabolomic viability score on predicting implantation outcome. J. Assist. Reprod. Genet. 28, 137–44.Google Scholar
Seli, E., Robert, C. & Sirard, M.A. (2010). OMICS in assisted reproduction: possibilities and pitfalls. Mol. Hum. Reprod. 16, 513–30.Google Scholar
Shaykhutdinov, R., MacInnis, G., Dowlatabadi, R., Weljie, A. & Vogel, H. (2009). Quantitative analysis of metabolite concentrations in human urine samples using C-13{H-1} NMR spectroscopy. Metabolomics 5, 307–17.Google Scholar
Shoukir, Y., Campana, A., Farley, T. & Sakkas, D. (1997). Early cleavage of in-vitro fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability. Hum. Reprod. 12, 1531–6.Google Scholar
Somfai, T., Inaba, Y., Aikawa, Y., Ohtake, M., Kobayashi, S., Konishi, K. & Imai, K. (2010). Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis. J. Reprod. Dev. 56, 200–7.Google Scholar
Steer, C., Mills, C., Tan, S., Campbell, S. & Edwards, R. (1992). The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum. Reprod. 7, 117–9.Google Scholar
Sugimura, S., Akai, T., Hashiyada, Y., Somfai, T., Inaba, Y., Hirayama, M., Yamanouchi, T., Matsuda, H., Kobayashi, S., Aikawa, Y., Ohtake, M., Kobayashi, E., Konishi, K. & Imai, K. (2012). Promising system for selecting healthy in vitro–fertilized embryos in cattle. PLoS One 7, e36627.Google Scholar
Tiziani, S., Emwas, A.H., Lodi, A., Ludwig, C., Bunce, C.M., Viant, M.R. & Günther, U.L. (2008). Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Anal. Biochem. 377, 1623.Google Scholar
Tiziani, S., Lopes, V. & Günther, U.L. (2009). Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 11, 269–76.Google Scholar
Turner, K., Martin, K.L., Woodward, B.J., Lenton, E.A. & Leese, H.J. (1994). Comparison of pyravate uptake by embryos derived from conception and non-conception natural cycles. Hum. Reprod. 9, 2362–6.CrossRefGoogle Scholar
Urbanski, J.P., Johnson, M.T., Craig, D.D., Potter, D.L., Gardner, D.K. & Thorsen, T. (2008). Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos. Anal. Chem. 80, 6500–7.Google Scholar
Van Soom, A., Ysebaert, M. & de Kruif, A. (1997). Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol. Reprod. Dev. 47, 4756.Google Scholar
Van Winkle, L., Campione, A. (1996). Amino acid transport regulation in preimplantation mouse embryos: effects of amino acid content and pre- amd peri-implantation development. Theriogenology 45, 6980.Google Scholar
Waugh, E.E. & Wales, R.G. (1993). Oxidative utilization of glucose, acetate and lactate by early preimplantation sheep, mouse and cattle embryos. Reprod. Fertil. Dev. 5, 123–33.Google Scholar
Wrenzycki, C., Herrmann, D., Carnwath, J. & Niemann, H. (1996). Expression of the gap junction gene connexin43 (Cx43) in preimplantation bovine embryos derived in vitro or in vivo . J. Reprod. Fertil. 108, 1724.Google Scholar
Yadav, B.R., King, W.A. & Betteridge, K.J. (1993). Relationships between the completion of first cleavage and the chromosomal complement, sex, and developmental rates of bovine embryos generated in vitro . Mol. Reprod. Dev. 36, 434–9.CrossRefGoogle ScholarPubMed
Zhang, A., Sun, H., Wang, P., Han, Y. & Wang, X. (2012). Modern analytical techniques in metabolomics analysis. Analyst 137, 293300.Google Scholar
Zhao, Q., Yin, T., Peng, J., Zou, Y., Yang, J., Shen, A. & Hu, J. (2013). Noninvasive metabolomic profiling of human embryo culture media using a simple spectroscopy adjunct to morphology for embryo assessment in in vitro fertilization (IVF). Int. J. Mol. Sci. 14, 6556–70.Google Scholar
Zhao, X., Ma, W., Das, S., Dey, S. & Paria, B. (2000). Blastocyst H2 receptor is the target for uterine histamine in implantation in the mouse. Development 127, 2643–51.Google Scholar
Ziebe, S., Petersen, K., Lindenberg, S., Andersen, A.G., Gabrielsen, A. & Andersen, A. (1997). Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum. Reprod. 12, 1545–9.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Perkel and Madan supplementary material 1

Supplementary Tables and Figure

Download Perkel and Madan supplementary material 1(PDF)
PDF 223.7 KB