Published online by Cambridge University Press: 28 February 2022
The study was undertaken to examine the relative abundance (RA) of the major developmental important candidate genes in different grades of immature oocytes (A-grade, B-grade, C-grade and D-grade) and various stages of in vitro-produced embryos (2-cell, 4-cell, 8–16-cell, morula, and blastocyst) of buffalo using RT-qPCR. Results showed that the RA of GLUT1, CX43, HSP70.1 and GDF9 was significantly higher (P < 0.05) in the A-grade of oocytes than the C-grade and D-grade but did not differ significantly from the B-grade of oocytes. Similarly, RA of BMP15 and Survivin were significantly higher (P < 0.05) in A-grade than the other grades of oocytes, however, poly(A) polymerase expression was not significantly different (P > 0.05) among the immature oocytes. The expression of GLUT1 was significantly higher (P < 0.05) in the blastocysts, but the expression of CX43 (P < 0.05; P > 0.05), HSP70.1 (P < 0.05; P > 0.05) and GDF9 (P > 0.05) was higher at the 2-cell stage than the other stages of embryos. Interestingly, the expression levels of poly(A) polymerase (P < 0.05), BMP15 (P < 0.05; P > 0.05) and Survivin (P > 0.05) were higher at the 8–16-cell stage than the other stages of embryos. It is concluded that A-grade of immature oocytes has shown more mRNA abundance for the major developmental important genes; therefore A-grade oocytes may be considered as the most developmentally competent and suitable for handmade cloning research in buffalo.