Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T14:24:46.610Z Has data issue: false hasContentIssue false

RA33, an analogue of resveratrol, improves the development of in vitro-fertilized bovine embryos

Published online by Cambridge University Press:  23 September 2022

Tais Aparecida Patrocinio
Affiliation:
UNIFENAS. Rodovia MG 179 – Km 0. C.P. 37130-000, Minas Gerais, Brazil
Carlos Antônio de Carvalho Fernandes*
Affiliation:
UNIFENAS. Rodovia MG 179 – Km 0. C.P. 37130-000, Minas Gerais, Brazil BIOTRAN, Rua Tatuin 447, C.P. 37130-000, MG, Brazil
Gilson Costa Macedo
Affiliation:
Universidade Federal de Juiz de Fora, UFJF, Rua José Lourenço Kelmer, 36036-900, MG, Brazil
Adilson David da Silva
Affiliation:
Universidade Federal de Juiz de Fora, UFJF, Rua José Lourenço Kelmer, 36036-900, MG, Brazil
Nadia Rezende Raposo Barbosa
Affiliation:
Universidade Federal de Juiz de Fora, UFJF, Rua José Lourenço Kelmer, 36036-900, MG, Brazil
Carolina Capobiango Romano Quintao
Affiliation:
Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA Gado de Leite, C.P. 36038-330, MG, Brazil
Marcela Eduarda da Silva Ribeiro
Affiliation:
UNIFENAS. Rodovia MG 179 – Km 0. C.P. 37130-000, Minas Gerais, Brazil
Luiz Sergio Almeida Camargo
Affiliation:
UNIFENAS. Rodovia MG 179 – Km 0. C.P. 37130-000, Minas Gerais, Brazil Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA Gado de Leite, C.P. 36038-330, MG, Brazil
*
Author for correspondence: Carlos Antônio de Carvalho Fernandes. BIOTRAN. Rua Tatuin 447. C.P. 37130-000. MG. Brazil. E-mail: [email protected]

Summary

Oxidative stress is an undesirable effect of in vitro culture, which requires antioxidant supplementation. This study investigated the analogue of resveratrol (RA33) as an alternative to resveratrol, an antioxidant molecule, for the in vitro culture of in vitro-fertilized bovine embryos. The effect of different concentrations of RA33 on embryo development was evaluated and a comparison between RA33 and resveratrol was performed. The cleavage rate was higher (P < 0.05) with 2.5 μM (69.0 ± 4.4%) than at 0, 0.1 or 0.5 μM RA33 (62.1 ± 2.0%, 60.7 ± 5.9% and 56.7 ± 5.8%, respectively). The blastocyst rates on days 7 and 8 post-fertilization with 2.5 μM RA33 (19.4 ± 3.3% and 24.6 ± 3.3%, respectively) were higher (P < 0.05) than for 0 μM (12.4 ± 2.5% and 15.2±2.5%, respectively). When 2.5 μM RA33 was compared with 0.5 μM resveratrol, similar (P > 0.05) cleavage and blastocyst rates were found between them, but the cleavage rate was higher (P < 0.05) in the control (80.8 ± 3.4%) than for the resveratrol treatment (76.4 ± 3.6%). The numbers of apoptotic cells and the apoptotic index were lower (P < 0.05) with RA33 (6.5 ± 0.6 cells and 6.4 ± 0.7%, respectively) and resveratrol (5 ± 0.8 cells and 5.5 ± 1.0%, respectively) than in the control group (9.8 ± 1.2 cells and 8.9 ± 1.1%, respectively). In conclusion, RA33 can enhance the preimplantation development of in vitro-fertilized bovine embryos and be an alternative to resveratrol in embryo culture medium.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, M. C., Gustafsson, H., Ruete, A. and Brandt, Y. C. (2012). Breed influences on in vitro development of abattoir-derived bovine oocytes. Acta Veterinaria Scandinavica, 54(1), 36. doi: 10.1186/1751-0147-54-36 CrossRefGoogle ScholarPubMed
Betts, D. H. and Madan, P. (2008). Permanent embryo arrest: Molecular and cellular concepts. Molecular Human Reproduction, 14(8), 445453. doi: 10.1093/molehr/gan035 CrossRefGoogle ScholarPubMed
Boccellino, M., Donniacuo, M., Bruno, F., Rinaldi, B., Quagliuolo, L., Ambruosi, M., Pace, S., De Rosa, M., Olgaç, A., Banoglu, E., Alessio, N., Massa, A., Kahn, H., Werz, O., Fiorentino, A. and Filosa, R. (2019). Protective effect of piceatannol and bioactive stilbene derivatives against hypoxia-induced toxicity in H9c2 cardiomyocytes and structural elucidation as 5-LOX inhibitors. European Journal of Medicinal Chemistry, 180, 637647. doi: 10.1016/j.ejmech.2019.07.033 CrossRefGoogle ScholarPubMed
Bókkon, I. (2012). [Hot Topic: recognition of functional roles of free radicals.] Current Neuropharmacology, 10(4), 287288. doi: 10.2174/157015912804499474 Google Scholar
Brill, A., Torchinsky, A., Carp, H. and Toder, V. (1999). The role of apoptosis in normal and abnormal embryonic development. Journal of Assisted Reproduction and Genetics, 16(10), 512519. doi: 10.1023/a:1020541019347, PubMed: 10575578CrossRefGoogle ScholarPubMed
Camargo, L. S. A., Viana, J. H. M., Sa, W. F., Ferreira, A. M., Ramos, A. A. and Vale Filho, V. R. (2006). Factors influencing in vitro embryo production. Animal Reproduction, 3(1), 1928.Google Scholar
Gjørret, J. O., Knijn, H. M., Dieleman, S. J., Avery, B., Larsson, L. I. and Maddox-Hyttel, P. (2003). Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biology of Reproduction, 69(4), 11931200. doi: 10.1095/biolreprod.102.013243 CrossRefGoogle ScholarPubMed
Guérin, P., El Mouatassim, S. and Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2), 175189. doi: 10.1093/humupd/7.2.175 CrossRefGoogle ScholarPubMed
Hara, T., Kin, A., Aoki, S., Nakamura, S., Shirasuna, K., Kuwayama, T. and Iwata, H. (2018). Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLoS ONE, 13(10), e0204571. doi: 10.1371/journal.pone.0204571 CrossRefGoogle ScholarPubMed
Hou, Y., Zhang, Y., Mi, Y., Wang, J., Zhang, H., Xu, J., Yang, Y., Liu, J., Ding, L., Yang, J., Chen, G. and Wu, C. (2019). A novel quinolyl-substituted analogue of resveratrol inhibits LPS-induced inflammatory responses in microglial cells by blocking the NF-κB/MAPK signaling pathways. Molecular Nutrition and Food Research, 63(20), e1801380. doi: 10.1002/mnfr.201801380 CrossRefGoogle ScholarPubMed
Kim, Y. A., Choi, B. T., Lee, Y. T., Park, D. Il., Rhee, S. H., Park, K. Y. and Choi, Y. H. (2004). Resveratrol inhibits cell proliferation and induces apoptosis of human breast carcinoma MCF-7 cells. Oncology Reports, 11(2), 441446. doi: 10.3892/or.11.2.441, PubMed: 14719081 Google ScholarPubMed
Kim, W. S., Kim, K., Byun, E. B., Song, H. Y., Han, J. M., Park, W. Y., Yuk, J. M. and Byun, E. H. (2020). RM, a novel resveratrol derivative, attenuates inflammatory responses induced by lipopolysaccharide via selectively increasing the Tollip protein in macrophages: A partial mechanism with therapeutic potential in an inflammatory setting. International Immunopharmacology, 78, 106072. doi: 10.1016/j.intimp.2019.106072 CrossRefGoogle Scholar
Lee, K., Wang, C., Chaille, J. M. and Machaty, Z. (2010). Effect of resveratrol on the development of porcine embryos produced in vitro. Journal of Reproduction and Development, 56(3), 330335. doi: 10.1262/jrd.09-174k CrossRefGoogle ScholarPubMed
Madrid Gaviria, S., López Herrera, A., Urrego, R., Restrepo Betancur, G. and Echeverri Zuluaga, J. J. (2019). Effect of resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology, 89, 4250. doi: 10.1016/j.cryobiol.2019.05.008 CrossRefGoogle ScholarPubMed
Pervaiz, S. and Holme, A. L. (2009). Resveratrol: Its biologic targets and functional activity. Antioxidants and Redox Signaling, 11(11), 28512897. doi: 10.1089/ars.2008.2412 CrossRefGoogle ScholarPubMed
Pirola, L. and Fröjdö, S. (2008). Resveratrol: One molecule, many targets. IUBMB Life, 60(5), 323332. doi: 10.1002/iub.47 CrossRefGoogle ScholarPubMed
Pocar, P., Augustin, R. and Fischer, B. (2004). Constitutive expression of CYP1A1 in bovine cumulus oocyte-complexes in vitro: Mechanisms and biological implications. Endocrinology, 145(4), 15941601. doi: 10.1210/en.2003-1254 CrossRefGoogle ScholarPubMed
Salzano, A., Albero, G., Zullo, G., Neglia, G., Abdel-Wahab, A., Bifulco, G., Zicarelli, L. and Gasparrini, B. (2014). Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Animal Reproduction Science, 151(3–4), 9196. doi: 10.1016/j.anireprosci.2014.09.018 CrossRefGoogle ScholarPubMed
Sovernigo, T. C., Adona, P. R., Monzani, P. S., Guemra, S., Barros, F., Lopes, F. G. and Leal, C. (2017). Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction in Domestic Animals, 52(4), 561569. doi: 10.1111/rda.12946 CrossRefGoogle ScholarPubMed
Sun, Y. L., Tang, S. B., Shen, W., Yin, S. and Sun, Q. Y. (2019). Roles of resveratrol in improving the quality of postovulatory aging oocytes in vitro. Cells, 8(10), 1132. doi: 10.3390/cells8101132 CrossRefGoogle ScholarPubMed
Wang, F., Tian, X., Zhang, L., He, C., Ji, P., Li, Y., Tan, D. and Liu, G. (2014). Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertility and Sterility, 101(2), 577586.e1. doi: 10.1016/j.fertnstert.2013.10.041 CrossRefGoogle ScholarPubMed
Zimmermann-Franco, D. C., Esteves, B., Lacerda, L. M., Souza, I. O., Santos, J. A. D., Pinto, N. C. C., Scio, E., da Silva, A. D. and Macedo, G. C. (2018). In vitro and in vivo anti-inflammatory properties of imine resveratrol analogues. Bioorganic and Medicinal Chemistry, 26(17), 48984906. doi: 10.1016/j.bmc.2018.08.029 CrossRefGoogle ScholarPubMed