Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T17:37:57.782Z Has data issue: false hasContentIssue false

Protein kinase C-dependent and independent events in mouse egg activation

Published online by Cambridge University Press:  26 September 2008

Rosella Colonna*
Affiliation:
Dipartimento di Scienze e Tecnologie Biomediche e di Biometria, Universita′ dell'Aquila, Collemaggio, L'Aquila, Italy
Carla Tatone
Affiliation:
Dipartimento di Scienze e Tecnologie Biomediche e di Biometria, Universita′ dell'Aquila, Collemaggio, L'Aquila, Italy
*
Rosella Colonna, Dipartimento di Scienze e Tecnologie Biomediche e di Biometria, Universita′ degli Studi dell'Aquila, Collemaggio I–67100 L'Aquila, Italy. Fax: 0862–433433.

Extract

The involvement of calcium- or protein kinase C (PKC)-dependent pathways in cortical granule exocytosis (CGE) and pronucleus formation was examined in mouse eggs using the specific PKC stimulator OAG (1-oleyl-2-acetyl-sn-glycerol) at different external calcium concentrations ([Ca2+]e) ranging from 1.7mM to 0.1μM. A 10 min exposure of eggs to 150 μM OAG in the presence of 1.7mM [Ca2+e caused a large calcium influx, cortical granule release and 82% activation. The increased permeability of the egg membrane to Ca2+ ions after OAG treatment lasted 20 min. At [Ca2+]e lower than 1.7 mM, both OAG-induced calcium influx and CGE decreased, reaching a non-detectable level at 0.1 μM and 100 μM [Ca2+]e, respectively. Resumption of meiosis was not affected by [Ca2+]e above 200 μM but it was reduced at any lower [Ca2+]e, with a minimum activation frequency of 46% at 0.1 μM [Ca2+]e. Loading of eggs with ≥3μM of the calcium chelator BAPTA AM (1,2-bis(o-aminophenox- y)ethane-N′,N′,N′,N′tetraacetic acid-acetoxymethyl ester) prior to OAG treatment caused a reduction in meiosis resumption with 50% of eggs forming pronuclei. Potent inhibitors of PKC, such as acridine orange and sphingosine, did not interfere with OAG-induced CGE. Conversely, these compounds prevented OAG-induced pronucleus formation in a dose-dependent manner with an IC50 (inhibiting concentration, 50%) of 5μM and 30 μM for acridine orange and sphingosine, respectively. Microinjection of inositol 1,4,5-trisphosphate into eggs at 0.1 pM elicited Ca2+ release from intracellular stores and the cortical reaction, but failed to stimulate pronucleus formation. These results indicate that, in mouse eggs, CGE is a PKC-independent event, and that the transition from M-phase to interphase may require PKC activity for stimulation.

Type
Review Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bement, W.M. & Capco, D.G. (1989). Activators of protein kinase C trigger cortical granule exocytosis, cortical contraction, and cleavage furrow formation in Xenopus laevis oocytes and eggs. J. Cell Biol. 8, 885–92.CrossRefGoogle Scholar
Bement, W.M. & Capco, D.G. (1990). Protein kinase C acts downstream of calcium at entry into the first mitotic interphase of Xenopus laevis. Cell Regulation. 1, 315–26.CrossRefGoogle ScholarPubMed
Bement, W.M. & Capco, D.G. (1991). Parallel pathways of cell cycle control during Xenopus egg activation. Proc. Natl. Acad. Sci. USA. 88, 5172–6.CrossRefGoogle ScholarPubMed
Berridge, M.J. (1984). Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220, 345–60.CrossRefGoogle ScholarPubMed
Berridge, M.J. (1987). Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev Biochem. 56, 159–93.CrossRefGoogle ScholarPubMed
Busa, W.B. & Nuccitelli, R. (1985). An elevated free cytosolic calcium wave follows fertilization in egg of the frog, Xenopus laevis. J. Cell Biol. 100, 1325–9.CrossRefGoogle ScholarPubMed
Chambers, E.L., Pressaman, B.C., &Rose, B. (1974). The activation of sea urchin eggs by the divalent ionophores A23187 and X–537A. Biochem. Biophys. Res. Commun. 60, 126–32.CrossRefGoogle ScholarPubMed
Ciapa, B. &Whitaker, M. (1986). Two phases of inositol polyphosphate and diacylglycerol production at fertilisation. FEBS Lett. 195, 347–51.CrossRefGoogle ScholarPubMed
Clapper, D.L. & Lee, H.C. (1985). Inositol trisphosphate induces calcium release from non-mitochondrial stores in sea urchin egg homogenates. J.Biol. Chem. 260, 13947–54.CrossRefGoogle Scholar
Colonna, R., Tatone, C., Malgaroli, A., Eusebi, F. & Mangia, F. (1989). Effects of protein kinase C stimulation and free Ca2+ rise in mammalian egg activation. Gamete Res. 24, 171– 83CrossRefGoogle ScholarPubMed
Cross, N.L. (1981). Initiation of the activation potential by an increase in intracellular calcium in eggs of the frog, Rana pipiens. Dev. Biol. 85, 380–4.CrossRefGoogle ScholarPubMed
Cuthbertson, K.S.R. & Cobbold, P.H. (1985). Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell ca2+. Nature. 316, 541–2.CrossRefGoogle ScholarPubMed
Cuthbertson, K.S.R., Whittingham, D.G. & Cobbold, P.H. (1981). Free ca2+ increases in exponential phases during mouse oocyte activation. Nature. 298, 754–7.CrossRefGoogle Scholar
Ducibella, T., Anderson, E., Albertini, D.F., Aalberg, J. & Rangarjan, S. (1988). Quantitative studies of changes in cortical granule number and distribution in mouse oocytes during meiotic maturation. Dev. Biol. 130, 184–97.CrossRefGoogle ScholarPubMed
Ducibella, T., Duffy, P., Kurasawa, S., Kopf, G.S. & Schultz, R.M. (1991). The cortical reaction and modifications of the zona pellucida are stimulated by protein kinase C agonists in the mouse egg. J. Cell Biol. 115, 461a.Google Scholar
Endo, Y., Schultz, M.R. & Kopf, G.S. (1987). Effects of phorbol esters and a diacylglycerol on mouse eggs: inhibition of fertilization and modification of the zona pellucida. Dev. Biol. 119, 199209.CrossRefGoogle Scholar
Fulton, B.P. &Wittingham, D.G. (1978). Activation of mammalian oocytes by intracellular injection of calcium. Nature. 273, 149–51.CrossRefGoogle ScholarPubMed
Gilkey, J.C. (1983). Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latypes. J. Cell Biol. 97, 669–78.CrossRefGoogle Scholar
Gilkey, J.C., Jaffe, L.F., Ridgway, E.B. &Reynolds, G.T. (1978) A free calcium wave traverses the activating egg of the medaka, Oryzia latipes. J. Cell Biol. 76, 448–66.CrossRefGoogle Scholar
Grandin, N. &Charbonneau, M. (1991). Intracellular pH and intracellular free calcium respoinses to protein kinase C. Development. 112, 461–70.CrossRefGoogle Scholar
Hannun, Y.A. & Bell, R.M. (1988). Aminoacridines, potent inhibitors of protein kinase. C. J. Biol Chem. 263, 5124–31.CrossRefGoogle ScholarPubMed
Hannum, Y.A., Loomis, C.R., Merrill, A.H. Jr. & Bell, R.M. (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J. Biol. chem. 261, 12604–9.CrossRefGoogle Scholar
Hidaka, H., Inagaki, M., Kawamoto, S. & Sasaki, Y. (1984).Isoquinoline sulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C.. Biochemistry. 23, 5036–41CrossRefGoogle ScholarPubMed
Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T., & Nishizuka, Y. (1983). Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J. Biol.chem. 258, 6701–4.CrossRefGoogle ScholarPubMed
Kamel, L.C., Bailey, J., Schoenbaum, L. & Kinsey, W. (1985). phosphatidyl inositol metabolism during fertilization in the sea urchin egg. Lipids. 6, 350–6.CrossRefGoogle Scholar
Kline, D. (1988). Calcium-dependent events at fertilization of the frog egg: injection of a calcium buffer blocks ion channel opening, exocytosis, and formation of pronuclei. Dev. Biol. 126, 346–61.CrossRefGoogle ScholarPubMed
Kline, D. & Kline, J.T. (1992 a). Repetitive calcium transients and the role of calcuim in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 149, 80–9.CrossRefGoogle Scholar
Kline, D. & Kline, J.T. (1992 b). Thapsigargin activates a calcium influx pathway in the unfertilized mouse egg and suppresses repetitive calcium transients in the fertilized egg. J. Biol Chem. 17624–30.CrossRefGoogle ScholarPubMed
Kubota, H.Y., Yoshimoto, M., Yoneda, M. & Hiramoto, Y. (1986). Free calcium wave upon activation in Xenopus eggs. Dev. Biol. 119, 129–36.CrossRefGoogle Scholar
Kurasawa, S., Schultz, R.M. & Kopf, G.S. (1989). Egg-induced modifications of the zona pellucida of mouse eggs effects of microinjected inositol 1,4,5-trisphosphate. Dev. Biol. 133, 295304.CrossRefGoogle ScholarPubMed
Miyazaki, S. (1988). Inositol 1,4,5–triphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs. J. Cell Biol. 106, 345–53.CrossRefGoogle Scholar
Miyazaki, S.N., Hashimoto, Y., Yoshimoto, T., Igusa, Y. & Hiramoto, Y. (1986). Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Dev. Biol. 118, 259–67.CrossRefGoogle ScholarPubMed
Nicolson, G.L., Yanagimachi, R. & Yanagimachi, H. (1975). Ultrastructural localization of lectin binding sites on the zonae pellucidae and plasma membranes of mammalian eggs. J. Cell Biol. 66, 263–74.CrossRefGoogle ScholarPubMed
Niedel, J.E., Kuhn, L.J. & Vanderbank, G.R. (1983). Phorbol diester receptor copurifies with protein kinase C. Proc.Natl. Acad Sci USA. 80, 3640.CrossRefGoogle ScholarPubMed
Nishizuka, Y. (1984). The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 308, 693–8.CrossRefGoogle ScholarPubMed
Nishizuka, Y. (1986). Studies and perspectives of protein kinase C. Science 233, 305–12.CrossRefGoogle ScholarPubMed
Schlichter, L. & Elinson, R.P. (1981). Electrical responses of immature and mature Rana pipiens oocytes to sperm and other activating stimuli. Dev. Biol. 83, 3341.CrossRefGoogle ScholarPubMed
Shen, S.S. & Buck, W.R. (1990). A synthetic peptide of the pseudosubstrate domain of protein kinase C blocks cytoplasmic alkalinization during activation of the sea urchin egg. Dev. Biol. 140, 272–80.CrossRefGoogle ScholarPubMed
Steinhardt, R.A. & Epel, D. (1974). Activation of sea-urchin eggs by a calcium ionophore Proc. Natl. Acad. Sci. USA. 71, 1915–19.CrossRefGoogle ScholarPubMed
Steinhardt, R.A., Carroll, E.J. & Yanagimachi, R. (1974). Is calcium ionophore a universal activator for unfertilized eggs? Nature 252, 41–3.CrossRefGoogle Scholar
Steinhardt, R., Zucker, R. & Shatten, G. (1977). Intracellular calcium release at fertilization in the sea urchin egg. Dev. Biol. 58, 185–96.CrossRefGoogle ScholarPubMed
Swann, K. & Whitaker, M. (1986). stimulation of Na/H exchanger of sea urchin eggs by phorbol ester. Nature 314, 74–7.Google Scholar
Swann, K., Ciapa, B. & Whitaker, M.J. (1987). Cell messengers and sea urchin egg activation. In Molecular Biology of invertebrate Development. ÓConnor, D.4569New York: A.R. Liss.Google Scholar
Tsien, R. & Pozzan, T. (1989). Measurement of cytosolic free Ca2+ with Quin2.. Methods Enzymol. 172, 230–62.CrossRefGoogle ScholarPubMed
Turner, P.R., sheetz, M.P. & Jaffe, L.A. (1984). Fertilization increases the polyphosphoinositide content of sea urchin eggs Nature 310, 414–15.CrossRefGoogle ScholarPubMed
Whitaker, M.J. & Steinhardt, R.A. (1985). Ionic signaling in the sea urchin egg at fertilization. In Biology of Fertlization, Metz, C.B.& Monroy, A., 3, 167221. San Diego CAAcademic Press.CrossRefGoogle Scholar
Whitten, W.K. (1971). Nutrient requirements for the culture of preimplantation embryos in vitro. Adv. Biosci. 6, 129–39.Google Scholar
Whittingham, D.G. (1971). Culture of mouse ova. J. Reprod Fertil. (Suppl.) 14, 721.Google ScholarPubMed