Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T00:33:58.091Z Has data issue: false hasContentIssue false

Pentoxifylline treatment had no detrimental effect on sperm DNA integrity and clinical characteristics in cases with non-obstructive azoospermia

Published online by Cambridge University Press:  19 October 2022

Maryam Mahaldashtian
Affiliation:
Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Mohammad Ali Khalili*
Affiliation:
Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Esmat Mangoli
Affiliation:
Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Saeed Zavereh
Affiliation:
School of Biology, Damghan University, Damghan, Iran
Fatemeh Anbari
Affiliation:
Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
*
Author for correspondence: Mohammad Ali Khalili. Professor of Embryology. Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Tel: +98 3518247085. Fax: +98 3518247087. E-mail: [email protected]

Summary

The aim of this study was to assess the consequences of treatment with pentoxifylline (PTX), an inducer of sperm motility, on sperm DNA fragmentation (SDF) and clinical characteristics in non-obstructive azoospermia (NOA) patients. The pilot study included 15 NOA patients. Half of each sperm sample before and after rapid freezing, was treated with PTX (3.6 mM /l, 30 min) as the PTX group and the remaining samples were considered as the control. SDF and sperm motility were assessed in each group. The clinical study comprised 30 fresh testicular sperm extractions (TESE) and 22 post-thawed TESE intracytoplasmic sperm injection cycles. Half of the mature oocytes from each patient were injected with PTX-treated spermatozoa and the remaining oocytes were injected with non-treated spermatozoa. Fertilization was assessed at 16 h post injection. Embryo transfer was carried out on day 2 after fertilization. Chemical pregnancy was assessed 2 weeks after transfer. PTX was found to significantly increase (P < 0.05) sperm motility. There was an insignificant difference in SDF rates between the groups (P > 0.05). In patient ovaries given fresh TESE, there was not any significant difference in clinical characteristics (P > 0.05). In patient ovaries given post-thawed TESE, there was a significant difference in the number of 2PN and in embryo formation (P < 0.05). Differences in the results of chemical pregnancy were insignificant (P > 0.05) between the groups. In addition, there was not any correlation between DNA fragmentation index and sperm motility and laboratory outcomes. Therefore, obtaining viable spermatozoa using PTX was more effective in post-thawed TESE regime patients in terms of 2PN and in embryo formation, deprived of damaging effects on sperm DNA integrity.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amer, M., Metawae, B., Hosny, H. and Raef, A. (2013). Beneficial effect of adding pentoxifylline to processed semen samples on ICSI outcome in infertile males with mild and moderate asthenozoospermia: A randomized controlled prospective crossover study. Iranian Journal of Reproductive Medicine, 11(11), 939944.Google ScholarPubMed
Anbari, F., Khalili, M. A., Agha-Rahimi, A., Maleki, B., Nabi, A. and Esfandiari, N. (2020). Does sperm DNA fragmentation have negative impact on embryo morphology and morphokinetics in IVF programme? Andrologia, 52(11), e13798. doi: 10.1111/and.13798 CrossRefGoogle ScholarPubMed
Asokan, Y., Honguntikar, S. D., Uppangala, S., Salian, S. R., Kumar, D., Kalthur, G. and Adiga, S. K. (2015). In situ viability detection assays induce heat-shock protein 70 expression in spermatozoa without affecting the chromatin integrity. Andrologia, 47(8), 958965. doi: 10.1111/and.12364 Google ScholarPubMed
Esteves, C. S. and Schneider, T. (2011). Male Infertility and assisted reproductive technology: lessons from the IVF. The Open Reproductive Science Journal, 3, 138153.CrossRefGoogle Scholar
Cetinkaya, M., Onem, K., Zorba, O. U., Ozkara, H. and Alici, B. (2015). Evaluation of microdissection testicular sperm extraction results in patients with non-obstructive azoospermia: Independent predictive factors and best cutoff values for sperm retrieval. Urology Journal, 12(6), 24362443.Google ScholarPubMed
Chehab, M., Madala, A. and Trussell, J. C. (2015). On-label and off-label drugs used in the treatment of male infertility. Fertility and Sterility, 103(3), 595604. doi: 10.1016/j.fertnstert.2014.12.122 CrossRefGoogle ScholarPubMed
Chohan, K. R., Griffin, J. T., Lafromboise, M., De Jonge, C. J. and Carrell, D. T. (2006). Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. Journal of Andrology, 27(1), 5359. doi: 10.2164/jandrol.05068 CrossRefGoogle ScholarPubMed
Cocuzza, M., Alvarenga, C. and Pagani, R. (2013). The epidemiology and etiology of azoospermia. Clinics (São Paulo), 68, Suppl. 1, 1526. doi: 10.6061/clinics/2013(sup01)03 CrossRefGoogle ScholarPubMed
Desai, N. and Rambhia, P. (2017) Cryopreservation of sperm for IVF: semen samples and individual sperm. In Montag, M. & Morbeck, D. (Eds.), Principles of IVF Laboratory Practice: Optimizing Performance and Outcomes (pp. 112118). Cambridge: Cambridge University. doi: 10.1017/9781316569238.018 CrossRefGoogle Scholar
Di Santo, M., Tarozzi, N., Nadalini, M. and Borini, A. (2012). Human sperm cryopreservation: Update on techniques, effect on DNA integrity, and implications for ART. Advances in Urology, 2012, 854837. doi: 10.1155/2012/854837 CrossRefGoogle ScholarPubMed
Duru, N. K., Morshedi, M. S., Schuffner, A. and Oehninger, S. (2001). Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. Journal of Andrology, 22(4), 646651.Google Scholar
Dutra, T. C. E., Scherer da Silva, D., Lazzari, V. M., Stein, A. and da Cunha Filho, J. S. (2018). Activation of the mobility of human spermatozoa with the use of pentoxifylline: Effects on spermal DNA. Human Reproduction Archives, 32, e000717.Google Scholar
Engel, K. M., Springsguth, C. H. and Grunewald, S. (2018). What happens to the unsuccessful spermatozoa? Andrology, 6(2), 335344. doi: 10.1111/andr.12467 CrossRefGoogle Scholar
Ferrigno, A., Ruvolo, G., Capra, G., Serra, N. and Bosco, L. (2021). Correlation between the DNA fragmentation index (DFI) and sperm morphology of infertile patients. Journal of Assisted Reproduction and Genetics, 38(4), 979986. doi: 10.1007/s10815-021-02080-w CrossRefGoogle ScholarPubMed
Griveau, J. F., Lobel, B., Laurent, M. C., Michardière, L. and Le Lannou, D. (2006). Interest of pentoxifylline in ICSI with frozen–thawed testicular spermatozoa from patients with non-obstructive azoospermia. Reproductive Biomedicine Online, 12(1), 1418. doi: 10.1016/s1472-6483(10)60974-1 CrossRefGoogle ScholarPubMed
Hill, G. A., Freeman, M., Bastias, M. C., Rogers, B. J., Herbert, C. M., Osteen, K. G. and Wentz, A. C. (1989). The influence of oocyte maturity and embryo quality on pregnancy rate in a program for in vitro fertilization-embryo transfer. Fertility and Sterility, 52(5), 801806. doi: 10.1016/s0015-0282(16)61034-8 CrossRefGoogle Scholar
Kovacic, B., Vlaisavljevic, V. and Reljic, M. (2006). Clinical use of pentoxifylline for activation of immotile testicular sperm before ICSI in patients with azoospermia. Journal of Andrology, 27(1), 4552. doi: 10.2164/jandrol.05079 CrossRefGoogle ScholarPubMed
Le, M. T., Nguyen, T. T. T., Nguyen, T. T., Nguyen, T. V., Nguyen, T. A. T., Nguyen, Q. H. V. and Cao, T. N. (2019). Does conventional freezing affect sperm DNA fragmentation? Clinical and Experimental Reproductive Medicine, 46(2), 6775. doi: 10.5653/cerm.2019.46.2.67 CrossRefGoogle ScholarPubMed
Mahaldashtian, M., Khalili, M. A., Nottola, S. A., Woodward, B., Macchiarelli, G. and Miglietta, S. (2021). Does in vitro application of pentoxifylline have beneficial effects in assisted male reproduction? Andrologia, 53(1), e13722. doi: 10.1111/and.13722 CrossRefGoogle ScholarPubMed
Manetta, L. A. (1998). Efeito da pentoxifilina sobre a motilidade e concentração in vitro dos espermatozóides humanos em indivíduos inférteis com oligoastenozoospermia e astenozoospermia. Revista Brasileira de Ginecologia e Obstetrícia, 20(1), 5353. doi: 10.1590/S0100-72031998000100011 CrossRefGoogle Scholar
Mangoli, V., Mangoli, R., Dandekar, S., Suri, K. and Desai, S. (2011). Selection of viable spermatozoa from testicular biopsies: A comparative study between pentoxifylline and hypoosmotic swelling test. Fertility and Sterility, 95(2), 631634. doi: 10.1016/j.fertnstert.2010.10.007 CrossRefGoogle ScholarPubMed
Mangoli, E., Khalili, M. A., Talebi, A. R., Agha-Rahimi, A., Soleimani, M., Faramarzi, A. and Pourentezari, M. (2019). IMSI procedure improves clinical outcomes and embryo morphokinetics in patients with different aetiologies of male infertility. Andrologia, 51(8), e13340. doi: 10.1111/and.13340 CrossRefGoogle ScholarPubMed
Mangoli, E., Khalili, M. A., Talebi, A. R., Kalantar, S. M., Montazeri, F., Agharahimi, A. and Woodward, B. J. (2020). Association between early embryo morphokinetics plus transcript levels of sperm apoptotic genes and clinical outcomes in IMSI and ICSI cycles of male factor patients. Journal of Assisted Reproduction and Genetics, 37(10), 25552567. doi: 10.1007/s10815-020-01910-7 CrossRefGoogle ScholarPubMed
McKinney, K. A., Lewis, S. E. and Thompson, W. (1996). The effects of pentoxifylline on the generation of reactive oxygen species and lipid peroxidation in human spermatozoa. Andrologia, 28(1), 1520. doi: 10.1111/j.1439-0272.1996.tb02752.x CrossRefGoogle ScholarPubMed
Mehta, A. and Sigman, M. (2014). Identification and preparation of sperm for ART. Urologic Clinics of North America, 41(1), 169180. doi: 10.1016/j.ucl.2013.08.005 CrossRefGoogle ScholarPubMed
Meseguer, M., Santiso, R., Garrido, N., Gil-Salom, M., Remohí, J. and Fernandez, J. L. (2009). Sperm DNA fragmentation levels in testicular sperm samples from azoospermic males as assessed by the sperm chromatin dispersion (SCD) test. Fertility and Sterility, 92(5), 16381645. doi: 10.1016/j.fertnstert.2008.08.106 CrossRefGoogle ScholarPubMed
Modarresi, T., Hosseinifar, H., Daliri Hampa, A., Chehrazi, M., Hosseini, J., Farrahi, F., Dadkhah, F., Sabbaghian, M. and Sadighi Gilani, M. A. (2015). Predictive factors of successful microdissection testicular sperm extraction in patients with presumed Sertoli cell-only syndrome. International Journal of Fertility and Sterility, 9(1), 107112. doi: 10.22074/ijfs.2015.4214 Google ScholarPubMed
Muriel, L., Meseguer, M., Fernández, J. L., Alvarez, J., Remohí, J., Pellicer, A. and Garrido, N. (2006). Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: A blind prospective study. Human Reproduction, 21(3), 738744. doi: 10.1093/humrep/dei403 CrossRefGoogle ScholarPubMed
Nabi, A., Khalili, M. A., Fesahat, F., Talebi, A. and Ghasemi-Esmailabad, S. (2017). Pentoxifylline increase sperm motility in devitrified spermatozoa from asthenozoospermic patient without damage chromatin and DNA integrity. Cryobiology, 76, 5964. doi: 10.1016/j.cryobiol.2017.04.008 CrossRefGoogle ScholarPubMed
Nabi, A., Entezari, F., Miresmaeili, S. M., Vahidi, S., Lorian, K., Anbari, F. and Motamedzadeh, L. (2021). Evaluation of sperm parameters and DNA integrity following different incubation times in PVP medium. Urology Journal, 19(3), 232237. doi: 10.22037/uj.v18i.6936 Google ScholarPubMed
Navas, P., Paffoni, A., Intra, G., González-Utor, A., Clavero, A., Gonzalvo, M. C., Díaz, R., Peña, R., Restelli, L., Somigliana, E., Papaleo, E., Castilla, J. A. and Viganò, P. (2017). Obstetric and neo-natal outcomes of ICSI cycles using pentoxifylline to identify viable spermatozoa in patients with immotile spermatozoa. Reproductive Biomedicine Online, 34(4), 414421. doi: 10.1016/j.rbmo.2017.01.009 CrossRefGoogle ScholarPubMed
Panner Selvam, M. K. and Agarwal, A. (2018). A systematic review on sperm DNA fragmentation in male factor infertility: Laboratory assessment. Arab Journal of Urology, 16(1), 6576. doi: 10.1016/j.aju.2017.12.001 CrossRefGoogle ScholarPubMed
Rahiminia, T., Hosseini, A., Anvari, M., Ghasemi-Esmailabad, S. and Talebi, A. R. (2017). Modern human sperm freezing: Effect on DNA, chromatin and acrosome integrity. Taiwanese Journal of Obstetrics and Gynecology, 56(4), 472476. doi: 10.1016/j.tjog.2017.02.004 CrossRefGoogle ScholarPubMed
Salian, S. R., Nayak, G., Kumari, S., Patel, S., Gowda, S., Shenoy, Y., Sugunan, S., G K, R., Managuli, R. S., Mutalik, S., Dahiya, V., Pal, S., Adiga, S. K. and Kalthur, G. (2019). Supplementation of biotin to sperm preparation medium enhances fertilizing ability of spermatozoa and improves preimplantation embryo development. Journal of Assisted Reproduction and Genetics, 36(2), 255266. doi: 10.1007/s10815-018-1323-1 CrossRefGoogle ScholarPubMed
Setti, A. S., Braga, D. P. A. F., Iaconelli, A. and Borges, E. (2021a). Cryopreservation of both male and female gametes leads to reduced embryo development and implantation potential. Zygote, 29(5), 377382. doi: 10.1017/S0967199421000149 CrossRefGoogle ScholarPubMed
Setti, A. S., Braga, D. P. A. F., Provenza, R. R., Iaconelli, A. Jr. and Borges, E. Jr. (2021b). Oocyte ability to repair sperm DNA fragmentation: The impact of maternal age on intracytoplasmic sperm injection outcomes. Fertility and Sterility, 116(1), 123129. doi: 10.1016/j.fertnstert.2020.10.045 CrossRefGoogle ScholarPubMed
Tandara, M., Bajić, A., Tandara, L., Bilić-Zulle, L., Šunj, M., Kozina, V., Goluža, T. and Jukić, M. (2014). Sperm DNA integrity testing: Big halo is a good predictor of embryo quality and pregnancy after conventional IVF. Andrology, 2(5), 678686. doi: 10.1111/j.2047-2927.2014.00234.x CrossRefGoogle ScholarPubMed
Xian, Y., Jiang, M., Liu, B., Zhao, W., Zhou, B., Liu, X., Liu, S. and Li, F. (2022). A cryoprotectant supplemented with pentoxifylline can improve the effect of freezing on the motility of human testicular sperm. Zygote, 30(1), 9297. doi: 10.1017/S0967199421000368 CrossRefGoogle ScholarPubMed
Zini, A., Boman, J. M., Belzile, E. and Ciampi, A. J. H. R. (2008). Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: Systematic review and meta-analysis. Human Reproduction, 23(12), 26632668. doi: 10.1093/humrep/den321 CrossRefGoogle ScholarPubMed