Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T09:03:21.087Z Has data issue: false hasContentIssue false

Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates

Published online by Cambridge University Press:  20 November 2009

Masaya Morita
Affiliation:
Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 905–0227, Japan.
Ryota Suwa*
Affiliation:
Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 905-0227, Japan.
Akira Iguchi
Affiliation:
Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 905–0227, Japan.
Masako Nakamura
Affiliation:
Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 905–0227, Japan.
Kazuaki Shimada
Affiliation:
Ocean Research Institute, University of Tokyo, Tokyo 164-8639, Japan.
Kazuhiko Sakai
Affiliation:
Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 905–0227, Japan.
Atsushi Suzuki
Affiliation:
Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan.
*
All correspondence to: Ryota Suwa. Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 905-0227, Japan. Tel: +81 980 47 3049. Fax: +81 980 47 4919. e-mail: [email protected]

Summary

Ocean acidification is now recognized as a threat to marine ecosystems; however, the effect of ocean acidification on fertilization in marine organisms is still largely unknown. In this study, we focused on sperm flagellar motility in broadcast spawning reef invertebrates (a coral and a sea cucumber). Below pH 7.7, the pH predicted to occur within the next 100 years, sperm flagellar motility was seriously impaired in these organisms. Considering that sperm flagellar motility is indispensable for transporting the paternal haploid genome for fertilization, fertilization taking place in seawater may decline in the not too distant future. Urgent surveys are necessary for a better understanding of the physiological consequences of ocean acidification on sperm flagellar motility in a wide range of marine invertebrates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baird, A.H. & Maynard, J.A. (2008). Coral adaptation in the face of climate change. Science 320, 315.Google Scholar
Caldiera, K. & Wickett, M.E. (2003). Anthropogenic carbon and ocean pH. Nature 425, 365.Google Scholar
Christen, R., Schackmann, R.W. & Shapiro, B.M. (1982). Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. J. Biol. Chem. 257, 14881–90.Google Scholar
Coll, J.C., Bowden, B.F., Meehan, G.V., Konig, G.M., Carroll, A.R., Tapiolas, D.M., Aliño, P.M., Heaton, A., De'Nys, R., Leone, P.A., Leone, P.A., Maida, M., Aceret, T.L., Willis, R.H., Babcock, R.C., Willis, B.L., Florian, Z., Clayton, M.N. & Miller, R.L. (1994). Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the scleractinian coral Montipora digitata. Mar. Biol. 118, 177–82.Google Scholar
Dickson, A.G., Sabine, C.L., Christian, J.R. (eds) (2007) Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3, p. 191.Google Scholar
Eisenbach, M., & Tur-Kaspa, I. (1994). Human sperm chemotaxis is not enigmatic anymore. Fertil. Steril. 62, 233–5.Google Scholar
Fujimura, H., Oomori, T., Maehira, T. & Miyahira, K. (2001). Change of coral carbon metabolism influenced by coral bleaching. Galaxea 3, 4150.Google Scholar
Havenhand, J.N., Buttler, F.R., Thorndyke, M.C., Williamson, J.E. (2008). Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr. Biol. 18, R651.Google Scholar
Hoegh-Guldberg, O., Mumby, P.J., Hooten, A.J., Steneck, R.S., Greenfield, P., Gomez, E., Harvell, C.D., Sale, P.F., Edwards, A.J., Caldeira, K., Knowlton, N., Eakin, C.M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R.H., Dubi, A. & Hatziolos, M.E. (2007). Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–42.Google Scholar
Johnson, C.H., Clapper, D.L., Winkler, M.M., Lee, H.C. & Epel, D. (1983). A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH. Dev. Biol. 98, 493501.CrossRefGoogle ScholarPubMed
Kleypas, J.A., Feely, R.A., Fabry, V.J., Langdon, C., Sabine, C.L. & Robbins, L.L. (2006). Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: a Guide for Future Research. Report of a workshop held on 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey.Google Scholar
Kurihara, H. & Shirayama, Y. (2004). Effects of increased atmospheric CO2 on sea urchin early development. Mar. Ecol. Prog. Ser. 274, 161–9.Google Scholar
Leclercq, N., Gattuso, J.P. & Jaubert, J. (2002). Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol. Oceanogr. 47, 558–64.CrossRefGoogle Scholar
Lee, H.C., Johnson, C., & Epel, D. (1983). Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev. Biol. 95, 3145.Google Scholar
Levitan, D.R. & Petersen, C. (1995). Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–31.Google Scholar
Lewis, E. & Wallace, D.W.R. (1998). Program Developed for CO2 System Calculations, ORNL/ CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.CrossRefGoogle Scholar
Miller, R.L. (1985). Demonstration of sperm chemotaxis in echinodermata: Asteroidea, Holothuroidea, Ophiuridea. J. Exp. Zool. 234, 383414.Google Scholar
Morita, M., Nishikawa, A., Nakajima, A., Iguchi, A., Sakai, K., Takemura, A. & Okuno, M. (2006). Sperm flagellar motility initiation, chemotaxis, and inhibition by eggs in the coral, Acropora digitifera, A. gemmifera, and A. tenuis. J. Exp. Biol. 209, 4574–9.Google Scholar
Morita, M., Kitamura, M., Nakajima, A., Susilo, E.S. & Takemura, A., Okuno, M. (2009). Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber. Cell Motil. Cytoskelt. 66, 202–14.Google Scholar
Nakajima, A., Morita, M., Takemura, A., Kamimura, S. & Okuno, M. (2005) Increase in intracellular pH induces phosphorylation of axonemal proteins for flagellar motility activation in starfish sperm. J. Exp. Biol. 208, 4411–8.Google Scholar
Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R.J., Monfray, P., Mouchet, A., Najjar, R., Plattner, G.K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.F., Yamanaka, Y. & Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–6.Google Scholar
Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C. & Watson, A. (2005). Ocean Acidification due to Increasing Atmospheric Carbon Dioxide. Policy Document 12/05. Royal Society, London.Google Scholar
Suwa, R., Hirose, M. & Hidaka, M. (2008). Seasonal fluctuation in zooxanthella composition and photophysiology in the corals Pavona divaricata and P. decussata. Mar. Ecol. Prog. Ser. 361, 129–37.Google Scholar
Yanagimachi, R. (1957). Some properties of the sperm-activating factor in the micropyle area of the herring egg. Annot. Zool. Jpn. 41, 114–9.Google Scholar
Yoshida, M., Inaba, K. & Morisawa, M. (1993). Sperm chemotaxis during the process of fertilization in the Ascidians Ciona savignyi and Ciona intestinales. Dev. Biol. 157, 497506.Google Scholar