Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T16:25:12.542Z Has data issue: false hasContentIssue false

Observation of fresh Bos indicus embryos comparing stereoscopic and phase contrast microscopy

Published online by Cambridge University Press:  21 September 2012

M.E. Gutiérrez
Affiliation:
Departamento de Reproducción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000 Ciudad Universitaria 04510, MéxicoD.F.
C.S. Galina
Affiliation:
Departamento de Reproducción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000 Ciudad Universitaria 04510, MéxicoD.F.
N. Moreno-Mendoza
Affiliation:
Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
M.A. Alarcón
Affiliation:
Facultad de Ciencias Biológicas y Agropecuarias, Tuxpan, Universidad Veracruzana, Mexico.
B. Godínez
Affiliation:
Departamento de Reproducción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000 Ciudad Universitaria 04510, MéxicoD.F.
M.A. Lammoglia*
Affiliation:
Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana. Km 7.5 carr. Tuxpan-Tampico, Túxpan, Ver.Mexico. CP 92800. e-mail: [email protected]
*
All correspondence to: Miguel Ángel Lammoglia Villagómez. Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana. Km 7.5 carr. Tuxpan-Tampico, Túxpan, Ver.Mexico. CP 92800. e-mail: [email protected]

Summary

The precision of embryo evaluation using stereoscopic microscopy (SM) and inverted phase contrast microscopy (PCM) was compared in 20 Bos indicus cows superovulated at two different times of the year. In total, 118 embryos were collected and classified according to their developmental stage and quality by two independent evaluators using SM and inverted PCM. Cohen's kappa coefficient was used to determine concordance between SM and PCM observations. A good level of agreement (k = 0.616) was found for quality level, and a moderate one (k = 0.464) for developmental stage, particularly at the morula stage. Using the TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labelling) technique, concordance level was deemed to be low with the SM (k = 0.169), and poor with the PCM (k = 0.217). Differences in concordance levels were also found between observations made at the two times of year, 78 embryos were evaluated in the rainy season when concordance level was good (k = 0.68), in contrast to the 40 embryos evaluated in the dry season when agreement was found to be poor (k = 0.24). In conclusion, inverted PCM was somewhat more effective for evaluating embryos, particularly at the morula stage. However, considering the high cost of an inverted PCM, the differences observed do not justify its purchase for routine embryo evaluation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, M.M., Galina, C.S., Merchant, H., Montiel, F., Canseco, R. & Marquez, Y.C. (2002). Comparison of stereoscopy, light microscopy and ultrastructural methods for evaluation of bovine embryos. Reprod. Dom. Anim. 37, 341–6.Google Scholar
Alikani, M., Sadowy, S. & Cohen, J.Human embryo morphology and developmental capacity. In: Van Soom, Boerjan ML. (eds). (2002). Assessement of Mammalian Embryo Quality. Kluwer's Academic Publishers. Dordrecht, The Netherlands, pp. 267–93.Google Scholar
Antunes, G., Cheveiro, P., Marques, A., Jin, H.S. & Moreira da Silva, F. (2010). Influence of apoptosis in bovine embryo's development. Reprod. Dom. Anim. 45, 2632.Google Scholar
Barrios, D.R., Romge, J.C., Harms, P.G., Blake, R.W. & Kraemer, D.C. (1982). Evaluation of embryo collection and transfer as diagnostic tools for bovine infertility. Theriogenology 17, 17.Google Scholar
Bastidas, P. & Randel, R.D. (1987). Seasonal effects on embryo transfer results in Brahman cows. Theriogenology 4, 531–40.Google Scholar
Betts, D.H., & King, W.A. (2001). Genetic regulation of embryo death and senescence. Theriogenology 55, 171–91.Google Scholar
Bridges, G.A., Mussard, M.L., Burke, C.R. & Day, M.L. (2009). Influence of the length of proestrus on fertility and endocrine function in female cattle. Anim. Reprod. Sci. 117, 208–15.Google Scholar
Byrne, A.T., Southgate, J., Brison, D.R. & Lesse, H.J. (1999). Analysis of apoptosis in pre implantation bovine embryo using TUNEL. J. Reprod. Fertil. 117, 97105.Google Scholar
Callesen, H., Lǿvendahl, P., Bak, A. & Greve, T. (1995). Factors affecting the development stage of embryos recovered on day 7 from superovulated dairy cattle. J. Anim. Sci. 73, 1539–43.Google Scholar
Christensen, L.G. (1991). Use of embryo transfer in future cattle breeding schemes. Theriogenology 3, 141–9.Google Scholar
Contreras, D.A., Galina, C.S., Ávila, J.G, Asprón, M.P. & Moreno, N.M. (2008). A system to evaluate the quality of frozen embryos through short-term culture. Anim. Reprod. Sci. 106, 369–79.CrossRefGoogle ScholarPubMed
De Leeuw, A.M. (1996). Evaluation of uniformity among persons in embryo grading from video recordings. Theriogenology 45, 230–5.Google Scholar
Dobrinsky, J.R. (2002). Advancements in cryopreservation in domestic animal embryos. Theriogenology 57, 285302.CrossRefGoogle ScholarPubMed
Donaldson, L.E. (1984). Cattle breed as a source of variation in embryo transfer. Theriogenology 21, 1013–8.Google Scholar
Enciclopedia de los municipios de México Estado de Veracruz de Ignacio de la llave. Disponible en: URL: http://www.elocal.gob.mx/work/templates/enciclo/veracruz/municipios/30183a.htmGoogle Scholar
Enciclopedia de los municipios de México Estado de Veracruz de Ignacio de la llave. Disponible en: URL: http://www.e-mexico.gob.mx/work/templates/enciclo/veracruz/municipios/30023a.htmGoogle Scholar
Farin, P.W. & Farin, C.H. (1995). Transfer of bovine embryos produced in vivo or in vitro: survival and fetal development. Biol. Reprod. 52, 676–82.Google Scholar
Farin, P.W., Slenning, B.D. & Britt, J.H. (1999). Estimates of pregnancy outcomes based on selection of bovine embryos produced in vivo or in vitro. Theriogenology 52, 659–70.Google Scholar
Gjørret, J.O., Knijn, H.M., Dieleman, S.J., Avery, B., Larsson, L.I. & Maddox-Hyttel, P. (2003). Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol. Reprod. 69, 1193–200.Google Scholar
Godínez, B. (2009). Evaluación de la viabilidad de embriones F1 frescos y congelados utilizando el cultivo embrionario. Tesis de Maestría, Facultad de Medicina Veterinaria y Zootecnia. Universidad Nacional Autónoma de México, México D.F. 2009.Google Scholar
Hardy, K. & Spanos, S. (2002). Apoptosis in mammalian embryos. In: Van Soom, Boerjan ML (eds). Assessment of Mammalian Embryo Quality. Kluwer's Academic Publishers. Dordrecht, The Netherlands. pp. 267–93.Google Scholar
Hardy, K., Handyside, A.H. & Winston, R.M.L. (1999). The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development 107, 597604.Google Scholar
Hasler, J.F. (1992). Symposium: Reproductive technology and genetic improvement. Current status and potential of embryo transfer and reproductive technology in dairy cattle. J. Dairy Sci. 75, 2857–77.CrossRefGoogle Scholar
Hasler, J.F. (2006). The Holstein cow in embryo transfer today as compared to 20 years ago. Theriogenology 65, 416.Google Scholar
Hasler, J.F, McCauley, A.D., Schermerhorn, E.C. & Foote, R.H. (1983). Superovulatory responses of Holstein cows. Theriogenology 19, 8399.Google Scholar
Ikeda, S., Prendes, J.M., Alonso-Montes, C., Rodriguez, A., Díez, C., Kitagawa, M., Imai, H. & Gómez, E. (2006). Apoptosis independent poor morphology of bovine embryos produced by multiple ovulation. Reprod. Dom. Anim. 41, 383–5.Google Scholar
Jurisicova, A., Antenos, S. & Vermussa, S. (2003). Expression of apoptosis related genes during human preimplantation embryo development: potential roles for the harakiri gene product and Caspase-3 in blastomere fragmentation. Mol. Hum. Reprod. 9, 113–41.Google Scholar
Lindner, G.M. & Wright, R.W. (1983). Bovine embryo morphology and evaluation. Theriogenology 29, 407–16.Google Scholar
Lindsell, C.E., Murphy, B. & Mapletoft, R. (1986). Superovulatory and endocrine responses in heifers treated with FSH-P at different stages of the estrous cycle. Theriogenology 26, 209–19.Google Scholar
Lopes, AS., Ramsing, N., Larsen, L.H., Räty, M., Peippo, J., Greve, T. & Callesen, H. (2005). Correlation between oxygen respiration rates and morphology, sex, diameter and developmental stage of single bovine IVP-embryos. Reprod. Fertil. Dev. 17, 151.Google Scholar
López-Demián, E.P., Galina, C.S., Merchant, H., Cedillo-Peláez, C. & Aspron, M. (2008). Assessment of Bos taurus embryos comparing stereoscopic microscopy and transmission electron microscopy. J. Cell. Anim. Biol. 2, 72–8.Google Scholar
Márquez-Alvarado, Y.C., Galina, C.S., Castilla, B., León, H. & Moreno-Mendoza, N. (2004). Evidence of damage in cryopreserved and fresh bovine embryos using the TUNEL technique. Reprod. Dom. Anim. 39, 141–5.Google Scholar
Márquez-Alvarado, Y.C., Galina, C.S., Moreno, N., Ruiz, H. & Merchant, H. (2005). Seasonal effect on Zebu embryo quality as determinate by their degree of apoptosis and resistance to cryopreservation. Reprod. Dom. Anim. 40, 553–8.Google Scholar
Montiel, F., Galina, C.S., Rubio, I. & Corro, M. (2006). Factors affecting pregnancy rate of embryo transfer in Bos indicus and Bos taurus/Bos indicus cows. J. Appl. Anim. Res. 29, 149–52.Google Scholar
Neto, C.A., Sanches, B.V., Perri, S.H.V., Sedena, F. & Garcia, J.F. (2004). Improvement in embryo recovery using uterine double flushing. Reprod. Fertil. Dev. 16, 207. Abstract 171.Google Scholar
Nogueira, M.F.G., Barros, B.J.P. & Teixeira, A.B. (2002). Embryo recovery and pregnancy rates after the delay of ovulation and fixed time insemination in superstimulated beef cow. Theriogenology 57, 1625–34.Google Scholar
Randel, R.D. (1984). Seasonal effects on female reproductive functions in the bovine (Indian breeds). Theriogenology 21, 170–85.Google Scholar
Rondeau, M., Guay, P., Goff, A.K. & Cooke, G.M. (1995). Assessment of embryo potential by visual and metabolic evaluation. Theriogenology 44, 351–66.Google Scholar
Ryan, D.P., Prichard, J.F., Kopel, E. & Godke, R.A. (1993). Comparing early embryo mortality in dairy cows during hot and cool seasons of the year. Theriogenology 39, 719–37.Google Scholar
Spell, A.R., Beal, W.E., Corah, L.R. & Lamb, G.C. (2001). Evaluating recipient and embryo factors that affect pregnancy rates of embryo transfer in beef cattle. Theriogenology 56, 287–97.Google Scholar
Van Soom, A., Ysebaert, M.T., Vanhoucke-De Medts, A., Van de Velde, A., Merton, S., Delval, A., Van Langendonckt, A., Donnay, I., Vanroose, G., Bols, P.E.J. & de Kruif, A. (1996). Sucrose-induced shrinkage of in vitro produced bovine morulae: effect on viability, morphology and ease of evaluation. Theriogenology 46, 1131–47.CrossRefGoogle ScholarPubMed
Van Soom, A., Mateusen, B., Leroy, J. & De Kruif, A. (2003). Assessment of mammalian embryo quality: what can we learn from embryo morphology? Reprod. Biomed. Online 6, 664–70.Google Scholar
Wright, J.M. (1981). Non-surgical embryo transfer in cattle embryo-recipient interactions. Theriogenology 15, 4356.Google Scholar