Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T19:07:25.781Z Has data issue: false hasContentIssue false

Morphometrics and allometry of the larvae of five Characiformes species in the Paraíba do Sul River Basin

Published online by Cambridge University Press:  11 July 2017

Guilherme Souza*
Affiliation:
Laboratorio de Ciencias Ambientais, CBB, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Parque California, Campos dos Goytacazes, RJ, Brazil, CEP 28013–602. Piabanha Project, Itaocara, Rio de Janeiro, Brazil.
Erica P. Caramaschi
Affiliation:
Fish Ecology Laboratory, Department of Biology, Health Science Centre, Federal University of Rio de Janeiro [Laboratorio de Ecologia de Peixes, IB-CCS, Universidade Federal do Rio de Janeiro], Rio de Janeiro, Brazil.
Leandro R. Monteiro
Affiliation:
Environmental Sciences Laboratory, Bioscience and Biotechnology Centre, North Fluminense State University [Laboratorio de Ciencias Ambientais, CBB, Universidade Estadual do Norte Fluminense], Campos dos Goytacazes, RJ, Brazil.
*
All correspondence to: G. Souza. Laboratorio de Ciencias Ambientais, CBB, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Parque California, Campos dos Goytacazes, RJ, Brazil, CEP 28013–602. E-mail: [email protected]

Summary

The aim of this study was to analyse the morphology and allometry of larvae belonging to five potamodromous species. Five breeding species belonging to the order Characiformes [Salminus brasiliensis (Cuvier, 1816), Leporinus steindachneri, Eigenmann, 1907, Prochilodus lineatus (Valenciennes, 1837), Prochilodus vimboides (Kner,1859) and Brycon insignis, Steindachner, 1877] were used to obtain larvae samples during the pre-flexing, post-flexing, and juvenile developmental stages. When we observed the degree-hour (DH) amplitude time values, we found three developmental groups based on allometry and morphometrics within the period between the pre-flexing and post-flexing phases. Group 1 consists of the species S. brasiliensis and B. insignis, Group 2 consists of P. lineatus and P. vimboides, and Group 3 consists of L. steindachneri. Group 1 requires less development time and has more slender larvae. Group 2 has a moderate development time and larvae with a more rounded shape. Group 3 presents a greater development time and an intermediate larval morphology. It was possible to classify the larvae through cross-validated discriminant analyses based on seven morphometric variables with 90% accuracy in B. insignis, 83% in L. steindachneri, 91% in P. lineatus, 80% in P. vimboides, and 96% in S. brasiliensis. These results indicate larval characteristics that can be used for the taxonomic identification of the icthyoplankton.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlstrom, E.H. & Ball, O.P. (1954). Description of eggs and larvae of jack mackerel (Trachurus symmetricus) and distribution and abundance of larvae in 1950 and 1951. Fish. Bull. 56, 209–45.Google Scholar
Ahlstrom, E.H., Butler, J.L. & Sumida, B.Y. (1976). Pelagic stromateoid fishes (Pisces, Perciformes) of the Eastern Pacific: kinds, distributions, and early life histories and observations on five of these from the Northwest Atlantic. Bull. Mar. Sci. 26, 285402.Google Scholar
Andrade-Talmelli, E.F., Kavamoto, E. T., Narahara, M.Y. & Fenerich-Verani, N. (2002) Reprodução induzida da piabanha, Brycon insignis (Steindachner, 1876), mantida em cativeiro. R. Bras. Zootec. 31, 803–11.Google Scholar
Balon, E.K. (1981). Saltatory processes and altricial to precocial forms in the ontogeny of fishes. Am. Zool. 21, 573–96.Google Scholar
Balon, E.K., (1985). Early life histories of fishes: new developmental, ecological and evolutionary perspectives. Developments in Environmental Biology of Fishes vol. 5, Dordrecht: Dr W. Junk Publishers, 280 pp.Google Scholar
Bialetzki, A. (1999). Drift of ichthyoplankton in two channels of the Paraná river, between Paraná and Mato Grosso do Sul States, Brazil. Braz. Arch. Biol. Technol. 42, 26.Google Scholar
Blaxter, J.H.S., Danielssen, D., Moksness, E. & Oiestad, V. (1984). Description of the early development of the halibut Hippoglossus and attempts to rear the larvae past first feeding. Mar. Biol. 73, 99107.Google Scholar
Buckup, P. A., Menezes, N. A., Ghazzi, M.S. (2007). Catálogo das espécies de peixes de água doce do Brasil. Rio de Janeiro, Museu Nacional, 195 pp.Google Scholar
Castro, R. & Vari, R.P. (2004). Detritivores of the South American fish family Prochilodontidae (Teleostei: Ostariophysi: Characiformes): a phylogenetic and revisionary study. Smithsonian Contributions to Zoology 622, 1189.Google Scholar
Chambers, R.C. & Leggett, W.C. (1987). Size and age at metamorphosis in marine fishes: An analysis of laboratory-reared winter flounder (Pseudopleutonectes americanus) with a review of variation in other species. Can. J. Fish. Aquat. Sci. 44, 1936–47.Google Scholar
Comabella, Y., Azanza, J., Hurtado, A., Canabal, J. & García-Galano, T. (2013). Crecimiento alométrico en larvas de manjuarí (Atractosteus tristoechus). Ecosistemas y Recursos Agropecuarios 29, 301–15.Google Scholar
Daly, H. (1985). Insect morphometrics. Annu. Rev. Entomol. 30, 415–38.Google Scholar
Devlin, R.H., Vandersteen, W.E., Uh, M. & Stevens, E.D. (2012). Genetically modified growth affects allometry of eye and brain in salmonids. Can. J. Zool. 90, 193202.Google Scholar
Esteves, K.E. & Pinto-Lobo, V.E. 2001. Feeding patterns of Salminus maxillosus (Pisces: Characidae) at Cachoeira de Emas, Mogi Guaçu River (São Paulo State, Southeast Brazil). Braz. J. Biol. 61, 267–76.Google Scholar
Fuiman, L.A. (1983). Growth gradients in fish larvae. J. Fish Biol. 23, 117–23.Google Scholar
Gilbert, S.F. & Bolker, J.A. (2003). Ecological developmental biology: Preface to the symposium. Evol. Dev. 5, 38.Google Scholar
Gisbert, E. (1999). Early development and allometric growth patterns in Siberian sturgeon and their ecological significance. J. Fish Biol. 54, 852–62.Google Scholar
Gisbert, E., Merino, G., Muguet, J.B., Bush, D., Piedrahita, R.H. & Conklin, D.E. (2002). Morphological development and allometric growth patterns in hatchery-reared California halibut larvae. J. Fish Biol. 61, 1217–29.Google Scholar
Gisbert, E. & Doroshov, S.I. (2006). Allometric growth in green sturgeon larvae. J. Appl. Ichth. 22, 202–7.Google Scholar
Gómez, M.I., Sánchez, S. & Fuentes, C.M. (2014). Shrinkage of Prochilodus lineatus (Valenciennes, 1847) larvae preserved in either ethyl-alcohol or formalin in relation to their developmental stage and feeding condition. J. Appl. Ichthyol. 30, 140144.Google Scholar
Kirtiklis, L., Palińska-żarska, K., Krejszeff, S., Kupren, K., Żarski, D., Fopp-Bayat, D. & Szabelska, A. (2016). Comparison of molecular and morphometric analysis in species discrimination of larvae among five cyprinids from the subfamily Leuciscinae: a tool for sustainable conservation of riverine ichthyofauna. Biologia 71, 1177–83.Google Scholar
Klingenberg, C.P. (2016). Size, shape, and form: concepts of allometry in geometric morphometrics. Dev. Genes. Evol. 226, 113–37.Google Scholar
Klingenberg, C.P. & Monteiro, L.R. (2005). Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst. Biol. 54, 678–88.Google Scholar
Koumoundouros, G., Divanach, P. & Kentouri, M. (1999). Ontogeny and allometric plasticity of Dentex (Osteichthyes: Sparidae) in rearing conditions. Mar. Biol. 135, 561–72.Google Scholar
Krzanowski, W. (2000). Principles of Multivariate Analysis: A User's Perspective. New York/Oxford: Oxford University Press.CrossRefGoogle Scholar
Kupren, K., Mamcarz, A., Kucharczyk, D. & Prusińska, M. (2008). Changes in morphometric parameters in selected early ontogenic stages of three fish species from the genus Leuciscus (Teleostei, Cyprynidae). Arch. Pol. Fish. 16, 421–36.CrossRefGoogle Scholar
Kupren, K., Prusiska, M., Arski, D., Krejszeff, S. & Kucharczyk, D. (2014a). Early development and allometric growth in Nannacara anomala Regan, 1905 (Perciformes: Cichlidae) under laboratory conditions. Neot. Icht. 12, 659–65.Google Scholar
Kupren, K., Trąbska, I., Żarski, D., Krejszeff, S., Palińska-Żarska, K. & Kucharczyk, D. (2014b). Early development and allometric growth patterns in burbot Lota L. Aquacult. Int. 22, 2939.CrossRefGoogle Scholar
Leis, J.M. & Trnski, T. (1989). The Larvae of Indo-Pacific Shorefishes. Kensington, NSW, New South Wales University Press. 371 pp.Google Scholar
Marques, N.R., Hayashi, C., Galdioli, E.M. & Fernandes, C.E.B. (2007). Seletividade alimentar de organismos-alimento por formas jovens de pacu Piaractus mesopotamicus (Holmberg, 1887) e curimba Prochilodus lineatus (Valenciennes, 1836). Acta Sci. Biol. Sci. 29, 167–76.CrossRefGoogle Scholar
Monteiro, L.R. & Reis, S.F. (1999). Princípios de Morfometria Geométrica, Ribeirão Preto: Holos.Google Scholar
Moraes Filho, M.B. & Schubart, O. (1955). Contribuição ao estudo do Dourado (Salminus maxillosus Val.) do Rio Mogi Guassu (Pisces, Characidae). Ministério da Agricultura, Divisão de Caça e Pesca. 131 pp.Google Scholar
Nakatani, K., Agostinho, A.A., Baumgartner, G., Bialetzki, A., Sanches, P.V., Makrakis, M.C. & Pavanelli, C.S. (2001). Ovos e Larvas de Peixes de Água Doce: Desenvolvimento e Manual de Identificação [Freshwater Eggs and Larvae: Development and Identification Manual], EDUEM, Maringá.Google Scholar
Ninhaus-Silveira, A., Foresti, F. & Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiforme; Prochilodontidae). Zygote 14, 217–29.Google Scholar
Osse, J.W.M. & van den Boogaart, J.G.M. (2004). Allometric growth in fish larvae: timing and function. In: The development of form and function in fish and the question of larval adaptation (ed. Govoni, J.J.), pp. 167–94. Bethesda, Maryland., USA: American Fisheries Society. Symposium, 40.Google Scholar
Osse, J.W.M., van den Boogaart, J.G.M., van Snik, G.M.J. & van der Sluys, L. (1997). Priorities during early growth of fish larvae. Aquaculture 155, 249–58.CrossRefGoogle Scholar
Peña, R. & Dumas, S. (2009). Development and allometric growth patterns during early larval stages of the spotted sand bass Paralabrax maculatofasciatus (Percoidei: Serranidae). Sci. Mar. 73S1, 183–9.Google Scholar
R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna.Google Scholar
Romagosa, E., Narahara, M.Y. & Fenerich-Verani, N. (2001). Stages of embryonic development of the ‘matrinxã’, Brycon cephalus (Pisces, Characidae). Bol. Inst. Pesca 27, 2732.Google Scholar
Sala, R., Santamaría, C.A. & Crespo, S. (2005). Growth of organ systems of Dentex dentex (L) and Psetta maxima (L) during larval development. J. Fish Biol. 66, 315–26.Google Scholar
Schutz, J.H. & Nuner, A.P.O. (2007). Growth and survival of dorado Salminus brasiliensis (Pisces, Characidae) post-larvae cultivated with different types of food and photoperiods. Braz. Arch. Biol. Technol. 50, 435–44.Google Scholar
Silva, A.C.G. (2010). Caracterização do desenvolvimento ontogênico inicial de Anchoviella vaillanti (Steindachner, 1908). Dissertação Mestrado em Recursos Pesqueiros e Aquicultura, Universidade Federal Rural de Pernambuco, Departamento de Pesca e Aquicultura, Recife.Google Scholar
Snik, G.M.J., Boogaart, J.G.M. & Osse, J.W.M. (1997). Larval growth patterns in Cyprinus carpio and Clarias gariepinus with attention to the finfold. J. Fish Biol. 50, 1339–52.Google Scholar
Snyder, D.E. (1981). Contributions to a Guide to the Cypriniform Fish Larvae of the Upper Colorado River System in Colorado. United States Bureau of Land Management, Colorado Office, Denver.Google Scholar
Souza, G. (2004). Reprodução induzida, ontogenia inicial, etologia larval e alevinagem da piabanha (Brycon insignis, Steindachner, 1877). Dissertação Mestrado em Produção Animal, Universidade Estadual do Norte Fluminense, Campos dos Goitacazes.Google Scholar
Venables, W.N. & Ripley, B.D. (2002). Modern Applied Statistics with S. New York: Springer.Google Scholar
Webb, J.F. (1999). Larvae in fish development and evolution. In The Origin and Evolution of Larval Forms (eds B.K. Hall & M.H. Wake), pp. 109–58. New York: Academic Press.CrossRefGoogle Scholar
Woynarovich, E., Horváth, L.A. (1983) propagação artificial de peixes de águas tropicais – Manual de extensão. FAO/CODEVASF/CNPq, 220 pp.Google Scholar