Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T00:02:02.519Z Has data issue: false hasContentIssue false

Isolation of egg cells and zygotes of Torenia fournieri L. and determination of their surface charge

Published online by Cambridge University Press:  01 May 2008

S.H. Chen
Affiliation:
South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China.
Y.H. Yang
Affiliation:
School of Life Science, Xiamen University, Xiamen, China.
J.P. Liao
Affiliation:
South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China.
A.X. Kuang
Affiliation:
School of Life Science, Xiamen University, Xiamen, China. Department of Biology, University of Texas – Pan American, Edinburg, Texas, USA.
H.Q. Tian*
Affiliation:
School of Life Science, Xiamen University, Xiamen 361005, China. School of Life Science, Xiamen University, Xiamen, China.
*
All correspondence to: Hui Qiao Tian. School of Life Science, Xiamen University, Xiamen 361005, China. Tel: +11 86 592 2186486. Fax: +11 86 592 2181015. e-mail: [email protected]

Summary

Egg cells of Torenia fournieri were isolated from embryo sacs 1 day after anthesis using enzymatic digestion or mechanical dissection. About 5% of the egg cells and zygotes (2–3 from 50 ovules) could be mechanically dissected within 2 h. When 0.1% cellulase and 0.1% pectinase were added to the mannitol isolation solution, about 18% of the egg cells (8–10 from 50 ovules) could be isolated within 2 h. The egg cells isolated by mechanical dissection could be used for in vitro fertilization studies without any of the potentially deleterious effects of the enzymes on the plasma membrane of egg cell. The egg cells isolated using enzymatic digestion could be used in the study of the molecular biology of female gamete because more egg cells could be isolated with this technique. Using enzymatic digestion, over 10 zygotes from 50 ovules (over 20%) were isolated from the pollinated ovules. Coupled with our successful isolation of mature sperm cells, the isolation of egg cells of T. fournieri will make in vitro fertilization possible in a dicotyledon plant.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cao, Y.J. & Russell, S.D. (1997). Mechanical isolation and ultrastructural characterization of viable egg cells in Plumbago zeylanica. Sex. Plant Reprod. 10, 368–73.CrossRefGoogle Scholar
Chen, S.H., Liao, J.P., Kuang, A.X. & Tian, H.Q. (2006). Isolation of two populations of sperm cells from the pollen tube of Torenia fournieri. Plant Cell. Rep. 25, 1138–42.CrossRefGoogle ScholarPubMed
Dresselhaus, T., Hagel, C., Lörz, H. & Kranz, E. (1996). Isolation of a full-length cDNA encoding calreticulin from a PCR library of in vitro zygotes of maize. Plant Mol. Biol. 32, 2334.CrossRefGoogle Scholar
Fu, Y., Yuan, M., Huang, B.Q., Yang, H.Y., Zee, S.Y. & O'Brien, T.P. (2000). Changes in actin organization in the living egg apparatus of Torenia fournieri during fertilization. Sex. Plant Reprod. 12, 315–22.CrossRefGoogle Scholar
Han, Y.Z., Huang, B.Q. & Zee, S.Y. (2000). Symplastic communication between the central cell and the egg apparatus cells in the embryo sac of Torenia fournieri L. Planta 211, 158–62.CrossRefGoogle Scholar
Han, Y.Z., Huang, B.Q., Guo, F.L., Zee, S.Y. & Gu, H.K. (2002). Sperm extract and inositol 1,4,5-triphosphate induce cytosolic calcium rise in the central cell of Torenia fournieri. Sex. Plant Reprod. 15, 187–93.CrossRefGoogle Scholar
Higashiyama, T., Kuroiwa, H., Kawano, S. & Kuroiwa, T. (1998). Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10, 2019–31.CrossRefGoogle Scholar
Higashiyama, T., Kuroiwa, H., Kawano, S. & Kuroiwa, T. (2000). Explosive discharge of pollen tube contents in Torenia fournieri. Plant Physiol. 122, 11–3.CrossRefGoogle ScholarPubMed
Higashiyama, T., Yabe, S., Sasaki, N., Nishimura, Y., Miyagishima, S., Kuroiwa, H. & Kuroiwa, T. (2001). Pollen tube attraction by the synergid cell. Science 293, 1480–3.CrossRefGoogle ScholarPubMed
Holm, P.B., Knudsen, S., Mourtzen, P., Negri, D., Olsen, F.L. & Roué, C. (1994). Regeneration of fertile barley plants from mechanically isolated protoplasts of fertilized egg cell. Plant Cell 6, 531–43.CrossRefGoogle ScholarPubMed
Imre, K. & Kristóf, Z. (1999). Isolation and osmotic relations of developing megagametophytes of Torenia fournieri. Sex. Plant Reprod. 12, 152–7.CrossRefGoogle Scholar
Kovács, M., Barnabás, B. & Kranz, E. (1994). Isolation of viable egg cells of wheat (Triticum aestivum L.) Sex. Plant Reprod. 7, 311–2.Google Scholar
Kranz, E. & Löra, H. (1993). In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plant. Plant Cell 5, 739–46.CrossRefGoogle Scholar
Kranz, E., Bautor, J. & Lörz, H. (1991). In vitro fertilization of single. Isolated gametes of maize mediated by electrofusion. Sex. Plant Reprod. 4, 12–4.CrossRefGoogle Scholar
Kumlehn, J., Brettschneider, R., Lörz, H. & Kranz, E. (1997). Zygote implantation to cultured ovules leads to direct embryogenesis and plant regeneration of wheat. Plant J. 12, 1473–9.CrossRefGoogle Scholar
Kumlehn, J., Lörz, H. & Kranz, E. (1998). Differentiation of isolated wheat zygotes into embryos and normal plants. Planta 205, 327–33.CrossRefGoogle Scholar
Kumlehn, J., Lörz, H. & Kranz, E. (1999). Monitoring individual development of isolated wheat zygotes: a novel approach to study early embryogenesis. Protoplasma 208, 156–62.CrossRefGoogle Scholar
Leduc, N., Matthys-Rochon, E. & Dumas, C. (1995). deleterious effects of minimal enzymatic treatments on the development of isolated maize embryo sacs in culture. Sex. Plant Reprod. 8, 313–7.CrossRefGoogle Scholar
Leduc, N., Mattys-Rochon, E., Rougier, M., Mogensen, L., Holm, P., Magnard, J.L. & Dumas, C. (1996). Isolated maize zygotes mimic in vivo embryonic development and express microinjected gene when cultured in vitro. Dev. Biol. 177, 190203.CrossRefGoogle ScholarPubMed
Mól, R. (1986). Isolation of protoplasts from female gametophytes of Torenia fournieri. Plant Cell Rep. 5, 202–6.CrossRefGoogle ScholarPubMed
Tian, H.Q. & Russell, S.D. (1997). Micromanipulation of male and female gametes of Nicotiana tabacum: I. Isolation of gametes. Plant Cell Rep. 16, 555–60.Google ScholarPubMed
Van Der Maas, H.M., Zaal, M.A.C.M., de Jong, E.R., Krens, F.A. & Van Went, J.L. (1993). Isolation of viable egg cells of perennial ryegrass (Lolium perenne L.). Protoplasma 173, 86–9.CrossRefGoogle Scholar
Van Oss, C.J. & Fuke, R.M. (1979). Simplified cell microelectrophoresis with uniform electroosmotic back flow. In Electrokinetic Separation Methods (eds Righetti, R.G., Oss, van C.J.. & Vanderhoff, J.W.), pp. 111–20. Amsterdam: Elsevier/North-Holland.Google Scholar
Van Went, J.L. & Kwee, H.S. (1990). Enzymatic isolation of living embryo sac of Petunia. Sex. Plant Reprod. 3, 257–62.CrossRefGoogle Scholar
Wallwork, M.A.B. & Sedgley, M. (2000). Early events in the penetration of the embryo sac in Torenia fournieri (Lind). Ann. Bot. 85, 447–54.CrossRefGoogle Scholar
Wang, Y.Y., Kuang, A., Russell, S.D. & Tian, H.Q. (2006). In vitro fertilization as a tool for investigating sexual reproduction of angiosperms. Sex. Plant Reprod. 19, 103–15.CrossRefGoogle Scholar
Zhang, Z. & Russell, S.D. (1999). Sperm cell surface characteristics of Plumbago zeylanica L. in relation to transport in the embryo sac. Planta 208, 539–44.CrossRefGoogle Scholar
Zhang, J., Dong, W.H., Galli, A. & Potrykus, I. (1999). Regeneration of fertile plants from isolated zygotes of rice (Oryza sativa). Plant Cell Rep. 19, 128–31.CrossRefGoogle ScholarPubMed