Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T14:22:46.818Z Has data issue: false hasContentIssue false

Glycine and methionine transport by bovine embryos

Published online by Cambridge University Press:  26 September 2008

Catherine Guyader-Joly
Affiliation:
UNCEIA, Chateauvillain; INRA, Jouy-en-Josas; and INSA, Villeurbanne, France
Chaqué Khatchadourian
Affiliation:
UNCEIA, Chateauvillain; INRA, Jouy-en-Josas; and INSA, Villeurbanne, France
Yves Ménézo*
Affiliation:
UNCEIA, Chateauvillain; INRA, Jouy-en-Josas; and INSA, Villeurbanne, France
*
Y. Ménézo, INSA, Unité de Biologie du développement préimplantatoire, Laboratoire de Biologie Appliquée, Bâtiment 406, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex, France. Telephone: +33/04 72 43 83 39. Fax: +33/04 72 43 85 11.

Summary

As glycine is one of the most concentrated amino acids in the female genital tract, we investigated its uptake by bovine in vitro matured/in vitro fertilised blastocysts in the presence of increasing concentrations of radiolabelled glycine. We also determined methionine uptake by in vitro and in vivo produced embryos. In our study, the hypothesis of more than one site of enzyme activity for glycine substrate was not validated. We determined a Vmax of 23.4fmol/min per embryo and a Km value of 13.3μM. No significant difference was observed either between in vivo and in vitro derived embryos or between grade 1 and grade 2 embryos for methionine uptake. The methionine and glycine uptake of a day 7 bovine was similar to that of a day 4 mouse blastocyst. This is rather low if we consider the relative cell numbers.

Type
Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bavister, B.D. & McKiernan, S.H. (1993). Regulation of hamster embryo development in vitro by amino acids. In Preimplantation Embryo Development, ed. Bavister, B.D., pp. 5772. New York: Springer-Verlag.CrossRefGoogle Scholar
Fanning, M.L., Schultz, R.H. & Graham, E.F. (1967). The free amino acid content of uterine fluids and blood serum in cow. J. Reprod. Fertil. 13, 229–36.CrossRefGoogle Scholar
Flipse, R.J. (1956). Metabolism of glycine by bovine spermatozoa. Science 124, 228–30.CrossRefGoogle ScholarPubMed
Guérin, P., Gallois, E., Croteau, S., Revol, N., Maurin, F., Guillaud, J. & Ménézo, Y.J.R. (1995). Techniques de récolte et aminogrammes des liquides tubaires et folliculaires chez les femelles domestiques. Revue Méd. Vét. 146, 805–14.Google Scholar
Guyader-Joly, C., Khatchadourian, C. & Ménézo, Y.J.R. (1996). Comparative glucose and fructose incorporation and conversion by in vitro produced bovine embryos. Zygote 4, 8591.CrossRefGoogle ScholarPubMed
Hasler, J.E., Henderson, W.B., Hurtgen, P.G., Jin, Z.Q., McCauley, A.D., Mower, S.A., Neely, B., Shuey, L.S., Stokes, J.E. & Trimmer, S.A. (1995). Production, freezing and transfer of bovine IVF embryos and subsequent calving results. Theriogenology 43, 141–52.CrossRefGoogle Scholar
Hobbs, J.G. & Kaye, P.L. (1985). Glycine transport in mouse eggs and preimplantation embryos. J. Reprod. Fertil. 74, 7786.CrossRefGoogle ScholarPubMed
Kane, M.T. & Foote, R.H. (1970). Culture of two- and fourcell rabbit embryos to the expanding blastocyst stage in synthetic media. Proc. Soc. Exp. Biol. Med. 133, 921–5.CrossRefGoogle Scholar
Khatchadourian, C., Guillaud, J. & Ménézo, Y.J.R. (1994). Interactions in glycine and methionine uptake, conversion and incorporation into proteins in the preimplantation mouse embryo. Zygote 2, 301–6.CrossRefGoogle ScholarPubMed
Ménézo, Y.J.R. & Torres, S. (1976). Free amino acid content of ewe uterine fluid under various hormonal treatments and during early pregnancy. Ann. Biol. Anim. Biochem. Biophys. 16, 537–43.CrossRefGoogle Scholar
Ménézo, Y.J.R., Khatchadourian, C., Gharib, A., Hamidi, J., Greenland, T. & Sarda, N. (1989). Regulation of S-adenosyl methionine synthesis in the mouse embryo. Life Sci. 44, 1601–9.CrossRefGoogle ScholarPubMed
Ménézo, Y.J.R., Guérin, J.F. & Czyba, J.C. (1990). Improvement of early embryonic development in vitro by coculture on monolayers of Vero cells. Biol. Reprod. 42, 301–6.CrossRefGoogle ScholarPubMed
Moore, K. & Bondioli, K.R. (1993). Glycine and alanine supplementation of culture medium enhances development of in vitro matured and fertilized cattle embryos. Biol. Reprod. 48, 833–40.CrossRefGoogle ScholarPubMed
Rousseau, J.P. & Ménézo, Y.J.R. (1993). Role of the female genital tract in the transport and survival of gametes and the fertilized egg. In Reproduction in Mammals and Man, ed. Thibault, C., Levasseur, M.C. & Hunter, R.H.F., pp. 369–86. Paris: Ellipses.Google Scholar
Schultz, G.A., Kaye, P.L., McKaye, D.J. & Johnson, M.H. (1981). Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos. J. Reprod, Fertil. 61, 387–93.CrossRefGoogle ScholarPubMed
Van Vinkle, L.J. & Dickinson, H. (1995). Differences in amino acid content of preimplantation mouse embryos that develop in vitro versus in vivo: in vitro effects of five amino acids that are most abundant in oviductal secretion. Biol. Reprod. 52, 96104.CrossRefGoogle Scholar
Van Vinkle, L.J., Haghighat, N. & Campione, A.L. (1990). Glycine protects implantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J. Exp. Zool. 253, 215–19.CrossRefGoogle Scholar
Xia, P., Rutledge, J. & Armstrong, D.T. (1995). Expression of glycine cleavage system and effect of glycine on in vitro maturation, fertilization and early embryonic development in pigs. Anim. Reprod. Sci. 38, 155–6CrossRefGoogle Scholar