Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T14:32:08.831Z Has data issue: false hasContentIssue false

Gamete quality in fish: evaluation parameters and determining factors

Published online by Cambridge University Press:  15 November 2013

Iván I. Valdebenito*
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
Patricia C. Gallegos
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
Brian R. Effer
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
*
All correspondence to: Iván I. Valdebenito. Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile. e-mail: [email protected]

Summary

The quality of fish gametes, both male and female, are determined by several factors (age, management, feeding, chemical and physical factors, water quality, etc.) that have an impact on the survivability of embryos, larvae and/or fry in the short or long term. One of the most important factors is gamete ageing, especially for those species that are unable to spawn naturally in hatcheries. The chemical and physical factors in hatcheries and the nutrition that they provide can significantly alter harvest quality, especially from females; as a rule, males are more tolerant of stress conditions produced by inadequate feeding, management and/or poor water conditions. The stress produced on broodstock by inadequate conditions in hatcheries can produce adverse effects on gamete quality, survival rates, and the embryonic eggs after hatching.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, G., Refstie, T. & Gjerde, B. (1991). Evaluation of milt quality of Atlantic salmon. Aquaculture 95, 125132.Google Scholar
Aegerter, S. & Jalabert, B. (2004). Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss. Aquaculture 231, 5971.Google Scholar
Akiyama, T., Shiraishi, M., Yamamoto, T. & Unuma, T. (1996). Effect of dietary tryptophan on maturation of ayu Plecoglossus altivelis. Fish. Sci. 62, 776782.Google Scholar
Akiyama, M., Tero, A. & Kobayashi, R. (2010). A mathematical model of cleavage. J. Theor. Biol. 264, 8494.Google Scholar
Alavi, S. & Cosson, J. (2005). Sperm motility in fishes I. Effects of temperature and pH: a review. Cell Biol. Int. 29, 101–10.Google Scholar
Alavi, S. & Cosson, J. (2006). Sperm motility in fishes II. Effects of ions and osmolality: a review. Cell Biol. Int. 30, 114.Google Scholar
Alavi, S., Cosson, J., Coward, K. & Rafiee, G. (eds.) (2008). Fish Spermatology. Oxford, UK: Alpha Science International Ltd, 397 pp.Google Scholar
Al-Hafedh, Y.S., Siddiqui, A.Q. & Al-Salady, M.Y. (1999). Effects of dietary protein levels on gonad maturation, size and age at first maturity, fecundity and growth of Nile tilapia. Aquacult. Int. 7, 319–32.Google Scholar
Allyn, L., Sheehan, J. & Kohler, C. (2001). The effects of capture and transportation stress on white bass semen osmolality and their alleviation via sodium chloride. Trans. Am. Fish. Soc. 130, 706–11.Google Scholar
Arrau, J., Bustos, E., Hoecker, G. & Ramos, A. (1981). Biología de la Reproducción Animal. Editorial Andrés Bello, 170 pp.Google Scholar
Asturiano, J., Sorbera, A., Carrillo, M., Zanuy, S., Ramos, J., Navarro, J. & Bromage, N. (2001). Reproductive performance in male European sea bass (Dicentrarchus labrax, L.) fed two PUFA-enriched experimental diets: a comparison with males fed a wet diet. Aquaculture 194, 173–90.Google Scholar
Atse, B., Audet, C. & De la Noue, J. (2002). Effects of temperature and salinity on the reproductive success of Artic charr, Salvelinus alpinus (L.): egg composition, milt characteristics and fry survival. Aqua. Res. 33, 299309.Google Scholar
Avery, S. & Brown, J. (2005). Investigating the relationship among abnormal patterns of cell cleavage, egg mortality and early larval condition in Limanda ferruginea. J. Fish Biol. 67, 890–6.CrossRefGoogle Scholar
Avery, S., Killen, S. & Hollinger, R. (2009). The relationship of embryonic development, mortality, hatching success, and larval quality to normal or abnormal early embryonic cleavage in Atlantic cod, Gadus morhua. Aquaculture 289, 265–73.Google Scholar
Babiak, I., Glogowski, J., Goryczko, K., Dobosz, S., Kuzminski, H., Strzezek, J. & Demianowicz, W. (2001). Effect of extender composition and equilibration time on fertilization ability and enzymatic activity of rain bow trout cryopreserved spermatozoa. Theriogenology 56, 177–92.Google Scholar
Balinsky, I. (1975). Introducción a la Embriología. Ediciones Omega S.A. Barcelona, 736 pp.Google Scholar
Barnes, M. & Durben, J. (2004). Lack of correlation between Chinook salmon spawn survival and the number of overripe eggs as determined by digital imagery. North Amer. J. Aquaculture 66, 165–7.Google Scholar
Barnes, M., Hanten, R., Cordes, R., Sayler, W. & Carreiro, J. (2000a). Reproductive performance of Inland fall Chinook salmon. North Amer. J. Aquaculture 3, 203–11.Google Scholar
Barnes, M., Hanten, R., Sayler, W. & Cordes, R. (2000b). Viability of Inland fall Chinook salmon spawn containing overripe eggs and the reliability of egg viability estimates. North Amer. J. Aquaculture 62, 237–9.2.3.CO;2>CrossRefGoogle Scholar
Barnes, M., Sayler, W. & Cordes, R. (2003). Potential indicators of egg viability in landlocked fall Chinook salmon spawn with or without the presence of overripe eggs. North Amer. J. Aquaculture 65, 4955.Google Scholar
Baynes, M. & Howell, B. (1996). The influence of egg size and incubation temperature on the condition of Solea solea (L.) larvae at hatching and first feeding. J. Exp. Mar. Biol. Ecol. 199, 5977.Google Scholar
Beacham, T., Withler, F. & Morley, R. (1985). Effect of egg size on incubation time and alevin and fry size in chum salmon (Oncorhynchus keta) and coho salmon (Oncorhynchus kisutch). Can. J. Zool. 63, 847–50.Google Scholar
Bennetau-Pelissero, C., Breton, B., Bennetau, B., Corraze, G., Le Menn, F., Davail-Cuisset, B., Helou, C. & Kaushik, S. (2001). Effect of genistein-enriched diets on the endocrine process of gametogenesis and on reproduction efficiency of the rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 121, 173–87.Google Scholar
Benzie, V. (1968). Some ecological aspects of the spawning behaviour and early development of the common whitebait. Galaxias maculatus attenuatus (Jenyns). Reprinted from Proc. N.Z. Ecol. Soc. 15, 31–9.Google Scholar
Berríos, O, Valdebenito, I. & Ubilla, C. (2010). Almacenamiento en frío de espermatozoides de trucha arcoiris (Oncorhynchus mykiss): efectos en la motilidad, superóxido intracelular, integridad de la membrana plasmática y potencial de membrana mitocondrial. Arch. Med. Vet. 42, 179–86.Google Scholar
Billard, R. (1988). Artificial insemination and gamete management in fish. Mar. Beh. Physiol. 14, 321.Google Scholar
Billard, R. (1990). La motilite du spermatozoide de poisson: aspects energetiques. 5as. Jornadas Internacionales de Reproducción Animal. Zaragoza, España. 14 al 17 de junio de 1990, pp. 163–86.Google Scholar
Bloom, J. & Dabrowski, K. (1995). Reproductive success of female rainbow trout (Oncorhynchus mykiss) in response to graded dietary ascorbyl monophosphate levels. Biol. Reprod. 52, 1073–80.Google Scholar
Bobe, J. & Labbé, C. (2010). Egg and sperm quality in fish. Gen. Comp. Endocr. 165, 535–48.CrossRefGoogle ScholarPubMed
Bonnet, E., Fostier, A. & Bobe, J. (2007). Characterization of rainbow trout egg quality: A case study ising four different breeding protocols, with emphasis on the incidence of embryonic malformations. Theriogenology 67, 786–94.Google Scholar
Bouck, G. & Jacobson, J. (1976). Estimation of salmonid sperm concentration by microhematocrit technique. Trans. Amer. Fisher. Soc. 105, 534–5.Google Scholar
Bromage, N. (1995). Broodstock Management and Seed Quality – General Considerations. In Broodstock Management and Egg and Larval Quality (eds. Bromage, N. & Roberts, R.J.) Blackwell Science, 424 pp.Google Scholar
Bromage, N. & Cumaranatunga, R. (1988). Egg production in the rainbow trout. In Recent Advances in Aquaculture vol. 3 (eds. Muir, J.F. & Roberts, R.J.), pp. 63138. London and Sydney/Portland, Oregon,Google Scholar
Bromage, N., Jones, J., Randall, C., Trush, M., Davies, B., Springate, J., Duston, J. & Barker, G. (1992). Broodstock management, fecundity, egg quality and the timing of production in the rainbow trout (Oncorhynchus mykiss). Aquaculture 100, 141–66.Google Scholar
Bromage, N., Bruce, M., Basavaraja, N. & Rana, K. (1994). Egg quality determinants in finfish: the role of overripening with special reference to the timing of stripping in the Atlantic halibut Hippoglossus hippoglossus. J. World Aquacult. Soc. 25, 1321.Google Scholar
Brooks, S., Tyler, CH. & Sumpter, J. (1997). Egg quality in fish: what makes a good egg? Rev. Fish Biol. Fisher. 7, 387416.Google Scholar
Cabrita, E., Sarasquete, C., Martinez-Paramo, S., Robles, V., Beirao, J., Perez-Cerezales, S., Herraez, M., 2010. Cryopreservation of fish sperm: applications and perspectives. J. Appl. Ichthyol. 26, 623–35.Google Scholar
Campbell, P., Pottinger, T. & Sumpter, J. (1992). Stress reduces the quality of gametes produced by rainbow trout. Biol. Reprod. 47, 1140–50.CrossRefGoogle ScholarPubMed
Campbell, P., Pottinger, T. & Sumpter, J. (1994). Preliminary evidence that chronic confinement stress reduces the quality of gametes produced by brown and rainbow trout. Aquaculture 120, 151–69.Google Scholar
Carrillo, M. & Zanuy, S. (1995). Manipulación de la Reproducción de los Teleósteos y Calidad de las Puestas. Instituto de Acuicultura de Torre de la Sal, C.S.I.C., Universidad de Barcelona. España. 450 pp.Google Scholar
Cerdá, J. (1993). Nutrición de Reproductores de Lubina (Dicentrarchus labrax L.): Efecto del Nivel de Ingesta y de la Administración de Diferentes Dietas Sobre el Metabolismo Intermediario del Reproductor y la Calidad de la Progenie. Memoria presentada para optar al grado de Doctor en Ciencias Biológicas por la Universidad de Barcelona. 226 pp.Google Scholar
Cerdá, J., Carrillo, M., Zanuy, S., Ramos, J. & De la Higuera, M. (1994). Influence of nutritional composition of diet on sea bass, Dicentrarchus labrax. L. reproductive performance and egg and larval quality. Aquaculture 128, 345–61.Google Scholar
Ciereszko, A. (2008). Chemical composition of seminal plasma and its physiological relationship with sperm motility, fertilizing capacity and cryopreservation success in fish. In Fish Spermatology. (eds. Alavi, S.M.H., Cosson, J., Coward, K., & Rafiee, G.), pp. 215–39. Oxford: Alpha Science Ltd.Google Scholar
Ciereszko, A., & Dabrowski, K. (1995). Sperm quality and ascorbic acid concentration in rainbow trout semen are affected by dietary vitamin C, an across season study. Biol. Reprod. 52, 982–8.Google Scholar
Ciereszko, A. & Dabrowski, K. (2000).In vitro effect of gossypol acetate on yellow perch (Perca flavescens) spermatozoa. Aquat. Toxicol. 49, 181–7.Google Scholar
Ciereszko, A., Liu, L. & Dabrowski, K. (1996). Effects of season and dietary ascorbic acid on some biochemical characteristics of rainbow trout (Oncorhynchus mykiss) semen. Fish Physiol. Biochem. 15, 110.Google Scholar
Ciereszko, R., Dabrowski, K., Ciereszko, A. & Ottobre, J. (1998). Plasma concentrations of steroid hormones in male yellow perch, Perca flavescens: the effect of age and photothermal manipulation. Env. Biol. Fish. 51, 97105.Google Scholar
Ciereszko, A., Dabrowski, K., Lin, F. & Liu, L. (1999a). Protective role of ascorbic acid against damage to male germ cells in rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 56, 178–83.Google Scholar
Ciereszko, A, Dabrowski, K., Kucharczyk, D., Dobosz, S., Goryczko, K. & Glogowski, J. (1999b). The presence of uric acid, an antioxidative substance, in fish seminal plasma. Fish Physiol. Biochem. 21, 313–5.Google Scholar
Ciereszko, A., Glogowski, J. & Dabrowski, K. (2000). Biochemical characteristics of seminal plasma and spermatozoa of freshwater fishes. In Cryopreservation in Aquatic Species (eds. Tiersch, T.R. & Mazik, P.M.). Baton Rouge, Louisiana: J. World Aquacult. Soc., pp. 2048.Google Scholar
Ciereszko, A., Wasow, T., Dobosz, S., Goryczko, K. & Glogowski, J. (2004). Blood cells in rainbow trout Oncorhynchus mykiss milt: relation to the milt collection method and season. Theriogenology 62, 1353–64.Google Scholar
Cosson, J. (2008). The motility apparatus of fish spermatozoa. In Fish Spermatology. (eds. Alavi, S.M.H., Cosson, J., Coward, K., & Rafiee, G.), pp. 281316. Oxford: Alpha Science Ltd.Google Scholar
Cosson, J. (2010). Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. J. Fish Biol. 76, 240–79.Google Scholar
Cosson, J., Groison, A., Suquet, M., Fauvel, C., Dreanno, C. & Billard, R. (2008). Studying sperm motility in marine fish; an overview on the state of the art. J. Appl. Ichthyol. 24, 460–86.Google Scholar
Dabrowski, K. & Bloom, J. (1994). Ascorbic acid deposition in rainbow trout (Oncorhynchus mykiss) eggs and survival of embryos. Comp. Biochem. Phys. A. 108, 129–35.Google Scholar
Dabrowski, K. & Ciereszko, A. (1994). Proteinase inhibitor(s) in seminal plasma of teleost fish. J. Fish Biol. 45, 801–9.Google Scholar
Dabrowski, K. & Ciereszko, A. (2001). Ascorbic acid and reproduction in fish: endocrine regulation and gamete quality. Aquac. Research 32, 623–38.Google Scholar
Dabrowski, K., Ciereszko, E., Ciereszko, A., Toth, G., Christ, S., El Saidy, D. & Ottobre, J. (1996). Reproductive physiology of yellow perch (Perca flavescens): environmental and endocrinological cues. J. Appl. Ichthyol. 12, 139–48.Google Scholar
Effer, B., Sanchez, R., Ubilla, A, Figueroa, E. & Valdebenito, I. (2012). Study of the first blastomeres in coho salmon (Oncorhynchus kisutch). Zygote 21, 151–7.Google Scholar
Effer, B., Sanchez, R., Ubilla, A., Figueroa, E. & Valdebenito, I. (2013a). Morphometric of blastomeres in Salmo salar. Zygote doi: http://dx.doi.org/10.1017/S0967199412000718.Google Scholar
Effer, B., Figueroa, E., Augsburger, A. & Valdebenito, I. (2013b). Sperm biology of Merluccius australis: Sperm structure, semen characteristics and effects of pH, temperature and osmolality on sperm motility. Aquaculture doi: 10.1016/j.aquaculture.2013.05.040.Google Scholar
Emri, M., Marian, T., Tron, L., Balkay, L. & Krasznai, Z. (1998). Temperature adaptation changes ion concentrations in spermatozoa and seminal plasma of common carp without affecting sperm motility. Aquaculture 167, 8594.Google Scholar
Eskelinen, P. (1989). Effects of different diets on egg production and egg quality of Atlantic salmon (Salmo salar L.). Aquaculture 79, 275–81.Google Scholar
Estay, F. (1988). Análisis de Algunos Factores Determinantes de Alteraciones en la Maduración Gonadal y Fertilidad en Salmo gairdneri (trucha arco iris) Cultivada. Tesis, Magister Cs. Biológicas, Mención Biologia de la Reproducción. Facultad de Medicina, Universidad de Chile. 185 pp.Google Scholar
Estay, F., Cerisola, H. & Téllez, V. (1994a). Biología del Desarrollo y Reproducción Artificial en la Trucha Arcoiris. Conicyt-Fondef. Santiago. 28 pp.Google Scholar
Estay, F., Díaz, N., Neira, R. & Fernández, X. (1994b). Analysis of reproductive performance of rainbow trout in a hatchery in Chile. The Progressive Fish-Culturist 56, 244–9.Google Scholar
Estay, F., Díaz, N., Neira, R. & García, X. (1997). reproductive performance of cultured female coho salmon in Chile. The Progressive Fish-Culturist 59, 3640.Google Scholar
Estay, F., Vergara, C. & Diaz, N. (1999). Reproductive performance of cultured Atlantic salmon Salmo salar L. 1758 in Chile. Aquaculture Research 30, 759–64.Google Scholar
Estay, F., Noriega, R., Ureta, J., Martín, W. & Colihueque, N. (2004). Reproductive performance of cultured brown trout (Salmo trutta L.) in Chile. Aquacult. Res. 35, 447–52.Google Scholar
Estévez, A. (1992). Reproducción en peces cultivados. Consellería de pesca, marisqueo & acuicultura. Dirección Xeral de Formación Pesquera e Investigación 7, 15.Google Scholar
Fernández-Palacios, H., Izquierdo, M., Robaina, L., Valencia, A., Salí, M. & Vergara, J. (1995). Effect of n-3 HUFA level in broodstock diets on egg quality of gilthead sea bream (Sparus aurata L.). Aquaculture 132, 325–37.Google Scholar
Fernández-Palacios, H., Izquierdo, M., Robaina, L., Valencia, A., Salí, M. & Montero, D. (1997). The effect of dietary protein and lipid from squid and fish meals on egg quality of broodstock for gilthead seabream (Sparus aurata). Aquaculture. 148, 233–46.Google Scholar
Figueroa, E., Risopatrón, J., Sánchez, R., Isachenko, E., Merino, O., Valdebenito, I. & Isachenko, V. (2013). Sperm vitrification of sex-reversed rainbow trout (Oncorhynchus mykiss): effect of seminal plasma on physiological para-meters. Aquaculture 372–375, 119126.Google Scholar
Finn, R. (2007). The physiology and toxicology of salmonid eggs and larvae in relation to water quality criteria. Aquat. Toxicol. 81, 337–54.Google Scholar
Fleming, I. (1998). Pattern and variability in the breeding system of Atlantic salmon (Salmo salar), with comparisons to other salmonids. Can. J. Fish. Aquat. Sci. 55, 5976.Google Scholar
Geffen, A. & Evans, J. (2000). Sperm traits and fertilization success of male and sex-reversed female rainbow trout (Oncorhynchus mykiss). Aquaculture 182, 6172.Google Scholar
Gill, M., Spiropoulos, J. & Moss, C. (2002). Testicular structure and sperm production in flounders from a polluted estuary: a preliminary study. J. Exp. Mar. Biol. Ecol. 281, 4151.Google Scholar
Gillet, C. (1991). Egg production in whitefish (Coregonus shinzi palea) broodstock: effects of photoperiod on the timing of spawning and the quality of eggs. Aquatic Living resources /Ressources vivantes aquatiques, Nantes 4, 33–9.Google Scholar
Giménez, G., Estévez, A, Lahnsteiner, F., Zecevic, B., Bell, J., Henderson, J., Piñera, J. & Sanchez-Prado, J. (2006). Egg quality criteria in common dentex (Dentex dentex). Aquaculture 260, 232–43.Google Scholar
Gisbert, E., Williot, P. & Castelló-Orvay, F. (2000). Influence of egg size on growth and survival of early stages of Siberian sturgeon (Acipenser baeri) under small scale hatchery conditions. Aquaculture 183, 8394.Google Scholar
Glogowski, J., Kwasnik, M., Piros, B., Dabrowski, K., Goryczko, K., Dobosz, S., Kuzminski, H. & Ciereszko, A. (2000). Characterization of rainbow trout milt collected with a catheter: semen parameters and cryopreservation success. Aqua. Res. 31, 289–96.Google Scholar
Gordon, M., Klotins, K., Campbell, V. & Cooper, M. (1987). Farmed Salmon Broodstock Management. Ministry of Environment Victoria, B.C. Industrial Research Assistance Program National Research Council of Canada. Sea-1 Aquafarms, Ltd. Vancouver, B.C.145 pp.Google Scholar
Haffray, P., Fostier, A., Normant, Y., Faure, A., Loir, M., Jalabert, B., Maisse, G. & Legac, F. (1995). Impact of sea-water rearing or fresh-water transfer on final maturation and on gamete quality in Atlantic salmon Salmo salar. Aquat. Liv. Resour. 8, 135–45.Google Scholar
Hamoutene, D., Lush, L., Drover, D. & Walsh, A. (2009). Investigation of the temporal effects of spawning season and maternal and paternal differences on egg quality in Atlantic cod Gadus morhua L. broodstock. Aquac. Res. 40, 1668–79.Google Scholar
Harden-Jones, F R. (1968). Fish Migration. London: Edward Arnold (Publishers) Ltd, 325 pp.Google Scholar
Ingermann, R.L., Robinson, M.L. & Cloud, J.G.. (2003). Respiration of steelhead trout sperm: sensitivity to pH and carbon dioxide. J. Fish Biol. 62, 1323.Google Scholar
Izquierdo, M., Fernández-Palacios, H. & Tacon, A. (2001). Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197, 2542.Google Scholar
Jenkins, J. & Tiersch, Y. (1997). A preliminary bacteriological study of refrigerated channel catfish sperm. J. World Aquac. Soc. 28, 282–8.Google Scholar
Jobling, S., Coey, S., Whitmore, J., Kime, D., Van Look, K., McAllister, B., Beresford, N., Henshaw, A., Brighty, G., Tyler, C. & Sumpter, P. (2002). Wild intersex roach (Rutilus rutilus) have reduced fertility. Biol. Reprod. 67, 515–24.CrossRefGoogle ScholarPubMed
Jordan, W. & Youngson, A. (1992). The use of genetic marking to assess the reproductive success of mature male Atlantic salmon parr (Salmo salar, L.) under natural spawning conditions. J. Fish Biol. 41, 613–8.Google Scholar
Kamler, E. (2005). Parent–egg–progeny relationships in teleost fishes: an energetics perspective. Rev. Fish Biol. Fisher. 15, 399421.Google Scholar
Kime, D. & Nash, J. (1999). Gamete viability as an indicator of reproductive endocrine disruption in fish. Sci. Total Environ. 233, 123–9.Google Scholar
Kiparissis, Y., Balch, G., Metcalfe, T. & Metcalfe, C. (2003). Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka (Oryzias latipes). Env. Health Persp. 111, 1158–63.Google Scholar
Kjorsvik, E. (1994). Egg quality in wild and broodstock cod Gadus morhua L. J. World Aquacult. Soc. 25, 22–9.CrossRefGoogle Scholar
Kjorsvik, E. & Holmefjord, I. (1995). Atlantic halibut (Hippoglossus hippoglossus) and cod (Gadus morhua) In Broodstock Management and Egg and Larval Quality (Bromage, N. & Roberts, R.J.). Editorial Blackwell Science, 424 pp.Google Scholar
Kjorsvik, E., Mangor-Jensen, A. & Holmefjord, I. (1990). Egg quality in fishes. Adv. Mar. Biol. 26, 71113.Google Scholar
Kjorsvik, E., Hoehne, K., Reitan, K. & Rainuzzo, J. (1998). International Council for the Exploration of the Sea. Theme Session on Farming Marine Fish beyond the Year 2000. Copenhagen (Denmark), 12 pp.Google Scholar
Kjorsvik, E., Hoehne-Reitan, K. & Reitan, K. (2003). Egg and larval quality criteria as predictive measures for juvenile production in turbot (Scophthalmus maximus L.). Aquaculture 227, 920.Google Scholar
Kowalski, R., Glogowski, J., Kucharczyk, D., Goryczko, K., Dobosz, S. & Ciereszko, A. (2003). Proteolytic activity and electrophoretic profiles of proteases from seminal plasma of teleosts. J. Fish Biol. 63, 1008–19.Google Scholar
Kunz, Y. (2004). Developmental Biology of Teleost Fishes. Springer, The Netherlands, 638 pp.Google Scholar
Labbé, C., Maisse, A., Muller, K., Zackowski, S. & Loir, M. (1995). Thermal acclimation and dietary lipids alter the composition, but not fluidity, of trout sperm plasma membrane. Lipids 30, 2333.Google Scholar
Labbé, C., Blesbois, E., Leboeuf, B., Martoriati, A., Guilloet, Ph., Stradaioli, G. & Magistrini, M. (2003). Technologie de la conservation du sperme chez plusieurs vertebras domestiques: protection des lipids membranaires, intégrité du noyau et élargissement des méthodes. Les Actes du BRG 4,143–57.Google Scholar
Lahnsteiner, F. (2003). Morphology, fine structure, biochemistry, and function of the spermatic ducts in marine fish. Tissue and Cell 35, 363–73.Google Scholar
Lahnsteiner, F. & Mansour, N. (2010). A comparative study on antioxidant systems in semen of species of the Percidae, Salmonidae, Cyprinidae, and Lotidae for improving semen storage techniques. Aquaculture 307, 130–40.Google Scholar
Lahnsteiner, F., Weismann, T. & Patzner, R. (1997). Aging processes of rainbow trout semen during storage. The prog. Fish-Cult. 59, 272–9.Google Scholar
Lahnsteiner, F., Berger, B., Weismann, T. & Patzner, R. (1998). Determination of semen quality of the rainbow trout, Oncorhynchus mykiss, by sperm motility, seminal plasma parameters, and spermatozoa metabolism. Aquaculture 163, 163–81.CrossRefGoogle Scholar
Lahnsteiner, F., Mansour, N. & Berger, B. (2004). Seminal plasma proteins prolong the viability of rainbow trout (Oncorynchus mykiss) spermatozoa. Theriogenology 62, 801–8.Google Scholar
Lahnsteiner, F., Mansour, N. & Plaetzer, K. (2010). Antioxidant systems of brown trout (Salmo trutta f. fario) semen. Anim. Reprod. Sci. 119, 314–21.Google Scholar
Liewes, E. (1984). Culture, Feeding and Diseases of Commercial Flatfish Species. Rotterdam: A.A. Balkema, 104 pp.Google Scholar
Livingstone, D. (2003). Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev. Med. Vet. 154, 427–30.Google Scholar
Maisse, G., Billard, R., Cosson, J., Labbe, C., Loir, M., Le Gac, F. & Fierville, F. (1998). Influence on the semen quality of maintaining males of Atlantic salmon, Salmo salar, in sea water during the breeding season. Bulletin Francais de la Peche et de la Pisciculture. 350–1, 349–57.Google Scholar
Mansour, N., McNiven, M. & Richardson, F. (2006). The effect of dietary supplementation with blueberry, a-tocopherol or astaxanthin on oxidative stability of Arctic char (Salvelinus alpinus) semen. Theriogenology 66, 373–82.Google Scholar
Mansour, N., Lahnsteiner, F., McNiven, M. & Richardson, G. (2008). Morphological characterization of Artic char, Salvelinus alpinus, eggs subjected to rapid post-ovulatory aging at 7°C. Aquaculture 279, 204–8.Google Scholar
Mochida, K., Kondo, T., Matsubara, T., Adachi, S. & Yamauchi, K. (1999). A high molecular weight glycoprotein in seminal plasma is a sperm immobilizing factor in teleost Nile tilapia, Oreochromis niloticus. Dev. Growth Differ. 41, 619–27.Google Scholar
Moran, D., Smith, C., Gara, B. & Poortenaar, C. (2007). Reproductive behaviour and early development in yellowtail kingfish (Seriola lalandi Valenciennes 1833). Aquaculture 262, 95104.Google Scholar
Morisawa, S. & Morisawa, M. (1986). Acquisition of potential for sperm motility in rainbow trout and chum salmon. J. Exp. Biol. 126, 8996.Google Scholar
Morisawa, S. & Morisawa, M. (1988). Induction of potential for sperm motility by bicarbonate and pH in rainbow trout and chum salmon. J. Exp. Biol. 136, 1322.Google Scholar
Morisawa, S., Ishida, K., Okuno, M. & Morisawa, M. (1993). Role of pH and cyclic adenosine monophosphate in the acquisition of potential for sperm motility during migration from the sea to the river in chum salmon. Mol. Reprod. Dev. 34, 420–6.Google Scholar
Mylonas, C., Papadaki, M., Pavlidis, M. & Divanach, P. (2004). Evaluation of egg production and quality in the Mediterranean red porgy (Pagrus pagrus) during two consecutive spawning seasons. Aquaculture 232, 637–49.Google Scholar
Nordeide, J. (2007). Is there more in ‘gamete quality’ than quality of the gametes? A review of effects of female mate choice and genetic compatibility on offspring quality. Aqua. Res. 38, 116.Google Scholar
Onuma, T., Sato, Sh., Jodo, A., Davis, N., Ando, H., Ban, M., Fukuwaka, M. & Urano, A. (2005). Changes in chum salmon plasma levels of steroid hormones during onset of the spawning migration in the Bering Sea. NPAFC Technical Report N° 6, pp. 104–6.Google Scholar
Pavlov, D. & Moksness, E. (1994). Production and quality of eggs obtained from wolfish (Anarhichas lupus L.) reared in captivity. Aquaculture 122, 295312.Google Scholar
Pavlov, D. & Emel´yanova, N. (2008). Morphological criteria of egg quality in marine fishes: activation and cleavage of eggs of Zebrasoma scopas (Acanthuridae). J. Ichthyol. 48, 537–52.Google Scholar
Penney, R., Lush, P., Wade, J., Brown, J., Parrish, C. & Burton, M. (2006). Comparative utility of egg blastomere morphology and lipid biochemistry for prediction of hatching success in Atlantic cod, Gadus morhua L. Aqua. Res. 37, 272–83.Google Scholar
Perchec, G., Cosson, M., Cosson, J., Jeulin, C. & Billard, R. (1996). Morphological and kinetic changes of carp (Cyprinus carpio) spermatozoa after initiation of motility in distilled water. Cell Motil. Cytoskelel. 35, 113–20.Google Scholar
Piper, R., McElwain, I., Orme, L., McCaren, J., Flowler, L. & Leonard, J. (1982). Fish Hatchery Management. Washington, D.C.: U.S. Fish and Wildlife Service, 517 pp.Google Scholar
Pollack, S., Ottinger, M., Sullivan, C. & Woods, L. (2003). The effects of the soy isoflavone genistein on the reproductive development of striped bass. North Am. J. Aqua. 65, 226–34.Google Scholar
Poupard, G., Paixon, P., Cosson, J., Jeulin, C., Fierville, F. & Billard, R. (1998). Initiation of carp spermatozoa motility and early ATP reduction after milt contamination by urine. Aquaculture 160, 317–28.Google Scholar
Rana, K. (1995). Preservation of gametes. In: Broodstock Management and Egg and Larval Quality (eds. Bromage, N.R. & Roberts, R.J.), pp. 5375. Oxford, England: Blackwell Science.Google Scholar
Rinchard, J., Ciereszko, A., Dabrowski, K. & Ottobre, J. (2000). Effects of gossypol on sperm viability and plasma steroid hormones in male sea lamprey (Petromyzon marinus). Toxicol. Lett. 111, 189–98.Google Scholar
Rinchard, J., Lee, K., Czesny, S., Ciereszko, A. & Dabrowski, K. (2003). Effect of feeding cottonseed meal–containing diets to broodstock rainbow trout and impact on growth of their progenies. Aquaculture 227, 7787.Google Scholar
Robles, V., Cabrita, E., Cunado, S. & Herraez, M. (2003). Sperm cryopreservation of sex-reversed rainbow (Oncorhynchus mykiss): parameters that affect its ability for freezing. Aquaculture 224, 203–12.Google Scholar
Sanchez-Rodríguez, M. & Billard, R. (1977). Conservation de la motilité et du pouvoir fécondant du serme de truite arc en ciel maintenu a des températures voisines de 0°C. Quarante Neuvieme Année 265, 143–50.Google Scholar
Sandnes, K. (1991). Vitamin C in fish nutrition – a review. Fisk. Dir. Ser. Ernaering 4, 3–32.Google Scholar
Sandnes, K., Ulgenes, Y., Braekkan, O. & Utne, F. (1984). The effect of ascorbic acid supplementation in broodstock feed on reproduction of rainbow trout (Salmo gairdneri). Aquaculture 43, 167–77.Google Scholar
Schreck, C., Contreras-Sanchez, W. & Fitzpatrick, M. (2001). Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture 197, 324.Google Scholar
Shields, R., Brown, N. & Bromage, N. (1997). Blastomere morphology as a predictive measure of fish egg viability. Aquaculture 155, 112.Google Scholar
Sierens, J., Hartley, J., Campbell, M., Leathem, A. & Woodside, J. (2002). In vitro isoflavone supplementation reduces hydrogen peroxide-induced DNA damage in sperm. Teratog. Carcinog. Mutagen. 22, 227–34.Google Scholar
Sink, T., & Lochmann, R. (2008). Effects of dietary lipid source and concentration on cannel catfish (Ictalurus punctatus) egg biochemical composition, egg and fry production, and egg and fry quality. Aquaculture 283, 6876.Google Scholar
Smith, C., Dwyer, W. & Piper, R. (1983). Effect of water temperature on egg quality of cutthroat. Progr. Fish–Culturist. 45, 176–8.Google Scholar
Springate, J. (1990). Egg quality and fecundity in rainbow trout factors and mechanisms of control. Dissertation Abstracts International Part B: Science and Engineering 51, 265 pp.Google Scholar
Sprigate, J.R.C., Bromage, N.R., Elliott, J.A.K. & Hudson, D.L. (1984). The timing of ovulation and stripping and their effects on the rates of fertilization and survival to eyeing, hatch and swim-up in the rainbow trout (Salmo gardnieri). Aquaculture 43, 313322.Google Scholar
Stoss, J. & Refstie, T. (1983). Short-term cryopreservation of milt from Atlantic salmon and sea trout. Aquaculture 30, 229–36.Google Scholar
Sumpter, J. (1997). The endocrinology of stress. In: Fish Stress and Health in Aquaculture. (eds. Iwama, G.K., Pickering, A.D., Sumpter, J.P. & Schreck, C.B.), pp. 95115. Cambridge: Cambridge University Press.Google Scholar
Takeuchi, T. & Watanabe, T. (1982). Effects of various polyunsaturated fatty acids on growth and fatty acid compositions of rainbow trout Salmo gairdneri, Coho salmon Oncorhynchus kisutchs, and chum salmon Oncorhynchus keta. Bull. Jpn. Soc. Sci. Fish. 48, 1745–52.Google Scholar
Tarín, J., Pérez-Albalá, S. & Cano, A. (2000). Consequences on offspring of abnormal function in ageing gametes. Mol. Hum. Reprod. 6, 532–49.Google Scholar
Taylor, N., & Ross, L. (1988). The use of hydrogen peroxide as a source of oxygen for the transportation of live fish. Aquaculture 70, 183–92.Google Scholar
Thorsen, A., Trippel, E. & Lambert, Y. (2003). Experimental methods to monitor the production and quality of eggs of captive marine fish. Atl. Fish. Sci. 33, 5570.Google Scholar
Tiersch, T., 2011. Introduction. In Cryopreservation in Aquatic Species, 2nd edn (eds. Tiersch, T.R. & Green, C.C.), pp. 117. Baton Rouge, Louisiana: World Aquaculture Society.Google Scholar
Toledo, M. I. (1994). Pigmentos y calidad en ovas de truchas: Alternativa para reducir costos. Aqua Noticias Internacional 21, 5661.Google Scholar
Torrissen, O. (1989). Biological Activities of Carotenoids in Fishes. Proceedings of the Third Internationa Symposium on Feeding and Nutrition in Fish, pp. 387–99.Google Scholar
Tuset, V., Dietrich, G., Wojtczak, M., Stowínska, M., Monserrat, J. & Cieresko, A. (2008). Relationships between morphology, motility and fertilization capacity in rainbow trout (Oncorhynchus mykiss) spermatozoa. J. Appl. Ichthyol. 24, 393–7.Google Scholar
Ubilla, A. & Valdebenito, I. (2011). Use of antioxidants on rainbow trout Oncorhynchus mykiss (Walbaum, 1792) sperm diluents: effects on motility and fertilizing capability. Lat. Am. J. Aquat. Res. 39, 338–43.Google Scholar
Ueda, H. (1998). Correlations between homing, migration and reproduction of chum salmon. NPAFC Bulletin No. 1. pp. 112–7.Google Scholar
Valdebenito, I., Fletcher, C. & Fernandez, J. (2009). Factores físico químicos que regulan la motilidad espermática en peces: aspectos básicos y aplicados. Una revisión. Arch. Med. Vet. 41, 97106.Google Scholar
Valdebenito, I., Paiva, L. & Berland, M. (2011). Atresia folicular en peces teleósteos: una revisión. Arch. Med. Vet. 43, 1125.Google Scholar
Valdebenito, I., Sánchez, R., Effer, B. & Ubilla, A. (2012). Morphometric characterization of the first blastomeres of rainbow trout (Oncorhynchus mykiss). Zygote doi:10.1017/S0967199411000682.Google Scholar
Vallin, L. & Nissling, A. (1998). Cell morphology as an indicator of viability of cod eggs-results from an experimental study. Fish. Res. 38, 247–55.Google Scholar
Vassallo-Agius, R., Watanabe, T., Yoshizaki, G., Satoh, S. & Takeuchi, Y. (2001). Quality of eggs and spermatozoa of rainbow trout fed an n-3 essential fatty acid-deficient diet and its effects on the lipid and fatty acid components of eggs, semen and livers. Fish. Sci. 67, 818–27.Google Scholar
Vuthiphandchai, V. & Zohar, Y. (1999). Age-related sperm quality of captive striped bass Morone saxatilis. J. World Aquac. Soc. 30, 6572.Google Scholar
Washburn, B.S., Frye, D.J., Hung, S.S.O., Doroshov, S.I. & Conte, F.S. (1990). Dietary effects on tissue composition, oogenesis and the reproductive performance of female rainbow trout (Oncorhynchus mykiss). Aquaculture 90, 179–95.Google Scholar
Watanabe, T. (1982). Lipid nutrition in fish. Comp. Biochem. Physiol. 73, 315.Google Scholar
Watanabe, T., & Kiron, V. (1995). Broodstock management and nutritional approaches for quality offspring in the Red Sea Bream (Pagrus major). In Broodstock Management and Egg and Larval Quality (eds. Bromage, N. & Roberts, R.J.) Editorial Blackwell Science. 424 pp.Google Scholar
Watanabe, T., Arakawa, T., Kitajima, C. & Fujita, S. (1984a). Effect nutritional quality of broodstock diets on reproduction of Red Sea bream. Nippon Suisan Gakkaishi. 50, 495501.Google Scholar
Watanabe, T., Takeuchi, T., Saito, M. & Nishimura, K. (1984b). Effect of low protein-high calorie or essential fatty acid deficiency diet on reproduction of rainbow trout. Bull. JPN. Soc. Fish. 50, 1207–15.Google Scholar
Watanabe, T., Lee, M., Mizutani, J., Yamada, T., Satoh, S., Takeuchi, T., Yoshida, N., Kitada, T. & Arakawa, T. (1991). Effective components in cuttlefish meal and raw krill for improvement of quality of Red Sea bream Pagrus major eggs. Nippon Suisan Gakkaishi 57, 681–94.Google Scholar
Westernhagen, H. (1988). Sublethal effects of pollutants on fish eggs and larvae. In Fish Physiology Vol. XI, The Physiology of Developing Fish, Part A, Eggs and Larvae (eds. Hoar, W.S. & Randall, D.J.), pp. 253346, London: Academic Press.Google Scholar
Williot, P., Kopeika, E. & Goncharov, B. (2000). Influence of testis state, temperature and delay in semen collection on spermatozoa motility in the cultured Siberian sturgeon (Acipenser baeri Brandt). Aquaculture 189, 5361.Google Scholar
Wootton, R.J. (1979). Energy costs of egg production and environmental determinants of fecundity in teleost fishes. Symp. Zool. Soc. Lond. 44, 133159.Google Scholar
Zohar, Y. & Mylonas, C. (2001). Endocrine manipulations of spawning in cultured fish: from hormones to genes. Aquaculture 197, 99136.Google Scholar