Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T15:55:53.597Z Has data issue: false hasContentIssue false

Forskolin effect on the cryosurvival of in vitro-produced bovine embryos in the presence or absence of fetal calf serum

Published online by Cambridge University Press:  18 July 2012

Daniela Martins Paschoal*
Affiliation:
São Paulo State University, UNESP, School of Veterinary Medicine and AnimalScience, FMVZ, Department of Animal Reproduction and Veterinary Radiology, Rubião Jr. s/n°, Botucatu/SP, Brazil, 18618-970.
Mateus José Sudano
Affiliation:
São Paulo State University, UNESP, School of Veterinary Medicine and Animal Science, FMVZ, Department of Animal Reproduction and Veterinary Radiology, Rubião Jr. s/n°, Botucatu/SP, Brazil, 18618-970.
Midyan Daroz Guastali
Affiliation:
São Paulo State University, UNESP, School of Veterinary Medicine and Animal Science, FMVZ, Department of Animal Reproduction and Veterinary Radiology, Rubião Jr. s/n°, Botucatu/SP, Brazil, 18618-970.
Rosiára Rosária Dias Maziero
Affiliation:
São Paulo State University, UNESP, School of Veterinary Medicine and Animal Science, FMVZ, Department of Animal Reproduction and Veterinary Radiology, Rubião Jr. s/n°, Botucatu/SP, Brazil, 18618-970.
Letícia Ferrari Crocomo
Affiliation:
São Paulo State University, UNESP, School of Veterinary Medicine and Animal Science, FMVZ, Department of Animal Reproduction and Veterinary Radiology, Rubião Jr. s/n°, Botucatu/SP, Brazil, 18618-970.
Luis Carlos Oña Magalhães
Affiliation:
São Paulo State University, UNESP, School of Veterinary Medicine and Animal Science, FMVZ, Department of Animal Reproduction and Veterinary Radiology, Rubião Jr. s/n°, Botucatu/SP, Brazil, 18618-970.
Tatiana da Silva Rascado
Affiliation:
São Paulo State University, UNESP, School of Veterinary Medicine and Animal Science, FMVZ, Department of Animal Reproduction and Veterinary Radiology, Rubião Jr. s/n°, Botucatu/SP, Brazil, 18618-970.
Alicio Martins Jr
Affiliation:
São Paulo State University, UNESP, School of Veterinary Medicine, FMVA, Department of Clinical Surgery and Animal Reproduction, Clóvis Pestana, 793, Araçatuba/SP, Brazil, 16050-680.
Fernanda da Cruz Landim-Alvarenga
Affiliation:
São Paulo State University, UNESP, School of Veterinary Medicine and Animal Science, FMVZ, Department of Animal Reproduction and Veterinary Radiology, Rubião Jr. s/n°, Botucatu/SP, Brazil, 18618-970.
*
All correspondence to: Daniela Martins Paschoal. São Paulo State University, UNESP, School of Veterinary Medicine and AnimalScience, FMVZ, Department of Animal Reproduction and Veterinary Radiology, Rubião Jr. s/n°, Botucatu/SP, Brazil, 18618-970. Tel: +55 14 38116249. Fax: +55 14 38116326. e-mail: [email protected]

Summary

The objective of this study was to assess the viability and cryotolerance of zebu embryos produced in vitro with or without the addition of fetal calf serum (FCS) and forskolin (F). Embryos produced in vivo were used as a control. Presumptive zygotes were cultured in modified synthetic oviductal fluid supplemented with amino acids (SOFaa), bovine serum albumin (BSA) and with (2.5%) or without (0%) FCS. On day 6 of growth, the embryos from each group were divided into treatments with or without 10 μM F to induce embryonic lipolysis, comprising a total of four experimental groups: 2.5% FCS, 0% FCS, 2.5% + F and 0% + F. For vitrification, embryos were exposed to vitrification solution 1 (5 M EG (ethylene glycol)) for 3 min and then transferred to vitrification solution 2 (7 M EG, 0.5 M galactose solution and 18% (w/v) Ficoll 70) before being introduced to liquid nitrogen. The presence of FCS in the culture medium resulted in the production of embryos with a similar rate of damaged cells compared with in vivo-produced embryos. After vitrification, the 2.5% FCS group had a significantly higher rate of damaged cells when compared with the other groups (P < 0.05). The results of this experiment indicated that the omission of FCS and the addition of forskolin do not have deleterious effect on embryo production rates. In addition, embryos produced in the presence of FCS had greater sensitivity to cryopreservation, but this effect was reversed when forskolin was added to the medium, which improved embryo survival without affecting embryo development and quality after vitrification.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H., Otoi, T., Tachikawa, S., Yamashita, S., Satoh, T. & Hoshi, H. (1999a). Fine structure of bovine morulae and blastocysts in vivo and in vitro. Anatom. Embryol. 199, 519–27.CrossRefGoogle ScholarPubMed
Abe, H., Yamashita, S., Itoh, T., Satoh, T. & Hoshi, H. (1999b). Ultrastructure of bovine embryos developed from in vitro-matured and -fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum-free medium or in serum-supplemented medium. Mol. Reprod. Dev. 53, 325–35.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Abe, H., Yamashita, S., Satoh, T. & Hoshi, H. (2002). Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol. Reprod. Dev. 61, 5766.CrossRefGoogle ScholarPubMed
Abe, H., Shiku, H., Aoyagi, S. & Hoshi, H. (2004). In vitro culture and evaluation of embryos for production of high-quality bovine embryos. J. Mamm. Ova Res. 21, 2230.CrossRefGoogle Scholar
Acker, J.P. & McGann, L.E. (2001). Membrane damage occurs during the formation of intracellular ice. Cryo Lett. 22, 241–54.Google ScholarPubMed
Arrese, E.L., Matthew, T.F., Gazard, J.L. & Wells, M.A. (1999). Calcium and cAMP are second messengers in the adipokinetic hormone-induced lipolysis of triacylglycerols in Manduca sexta fat body. J. Lipid Res. 40, 556–64.CrossRefGoogle ScholarPubMed
Barceló-Fimbres, M. & Seidel, G.E. Jr. (2007a). Effects of either glucose or fructose and metabolic regulators on bovine embryo development and lipid accumulation in vitro. Mol. Reprod. Dev.74, 1406–18.CrossRefGoogle ScholarPubMed
Barceló-Fimbres, M. & Seidel, G.E. Jr. (2007b). Effects of fetal calf serum, phenazine ethosulfate an either glucose or fructose during in vitro culture of bovine embryos on embryonic development alter cryopreservation. Mol. Reprod. Dev. 74, 1395–405.CrossRefGoogle ScholarPubMed
Barceló-Fimbres, M., Anchondo-Garay, A., López-Franco, E., García-Quiñonez, S., Antillón-Ruiz, J., Rodríguez-Almeida, F.A. & Seidel, G.E. (2010). Effects of delipidation with forskolin during in vitro culture of bovine embryos and recipient synchronization on pregnancy rates. Biol. Reprod. 83, 677.CrossRefGoogle Scholar
Bilodeau-Goeseels, S. (2006). Effects of culture media and energy sources on the inhibition of nuclear maturation in bovine oocytes. Theriogenology 66, 297306.CrossRefGoogle ScholarPubMed
Byrne, A.T., Southgate, J., Brison, D.R. & Leese, H.J. (1999). Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 117, 97105.CrossRefGoogle ScholarPubMed
Campbell, M.K. & Farrel, S.O. (2008). Bioquímica. Bioquímica metabólica, 5th edn.São Paulo: Thomson Learning, 845 pp.Google Scholar
Campos-Chillòn, L.F., Walker, D.J., De La Torre-Sanchez, J.F. & Seidel, G.E. Jr. (2006). In vitro assessment of a direct transfer vitrification procedure for bovine embryos. Theriogenology 65, 1200–14.CrossRefGoogle ScholarPubMed
Carolan, C., Lonergan, P., Van-Langendonckt, A. & Mermillod, P. (1995). Factors affecting bovine embryo development in synthetic oviduct fluid following oocyte maturation and fertilization in vitro. Theriogenology 43, 1115–28.CrossRefGoogle ScholarPubMed
De La Torre-Sanchez, J.F., Kimberly, P. & George, E.S. Jr. (2006). Metabolic regulation of in-vitro-produced bovine embryos. I. Effects of metabolic regulators at different glucose concentrations with embryos produced by semen from different bulls. Reprod. Fertil. Dev. 18, 585–96.CrossRefGoogle Scholar
Dinnyés, A., Carolan, C., Lonergan, P., Massip, A. & Mermillod, P. (1996). Survival of frozen or vitrified blastocysts produced in vitro in synthetic oviduct fluid. Theriogenology 42, 1425–39.CrossRefGoogle Scholar
Dorland, M., Gardner, D.K. & Trounson, A.O. (1994). Serum in synthetic oviduct fluid causes mitochondrial degeneration in ovine embryos (abstract). J. Reprod. Fertil. 13, 70.Google Scholar
Edashige, K., Asano, A., An, T.Z. & Kasai, M. (1999). Restoration of resistance to osmotic swelling of vitrified mouse embryos by short-term culture. Cryobiology 38, 273–80.CrossRefGoogle ScholarPubMed
Ek, I., Arner, P., Bergqvist, A., Carlström, K. & Wahrenberg, H. (1997). Impaired adipocyte lipolysis in nonobese women with the polycystic ovary syndrome: a possible link to insulin resistance? J. Clin. Endocrinol. Metab. 82, 1147–53.Google ScholarPubMed
Enright, B.P., Lonergan, P., Dinnyes, A., Fair, T., Ward, F.A., Yang, X. & Boland, M.P. (2000). Culture of in vitro produced bovine zygotes in vitro vs in vivo: implications for early embryo development and quality. Theriogenology 54, 659–73.CrossRefGoogle ScholarPubMed
Faherty, S., Fitzgerald, A., Keohan, M. & Quinlan, L.R. (2007). Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct4 expression: the role of the cAMP/PKA pathway. In Vitro Cell. Dev. Biol. – Animal 43, 3747.CrossRefGoogle ScholarPubMed
Ferguson, E.M. & Leese, H.J. (1999). Triglyceride content of bovine oocytes and early embryos. J. Reprod. Fertil. 116, 373–8.CrossRefGoogle ScholarPubMed
Gardner, D.K., Pool, T.B. & Lane, M. (2000). Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation and viability. Semin. Reprod. Med. 18, 205–18.CrossRefGoogle ScholarPubMed
George, F., Daniaux, C., Genicot, G., Verhaeghe, B., Lambert, P. & Donnay, I. (2008). Set up of a serum-free culture system for bovine embryos: embryo development and quality before and after transient transfer. Theriogenology 69, 612–23.CrossRefGoogle ScholarPubMed
Gómez, E. & Díez, C. (2000). Effects of glucose and protein sources on bovine embryo development in vitro. Anim. Reprod. Sci. 58, 2337.CrossRefGoogle ScholarPubMed
Ho, Ren-Jye, Shi, & Qi-Huang, (1982). Forskolin as a novel lipolytic agent. Biochem. Biophys. Res. Commun. 107, 157–64.CrossRefGoogle ScholarPubMed
Hochi, S., Kimura, K. & Hanada, A. (1999). Effect of linoleic acid-albumin in the culture medium on freezing sensitivity of in vitro-produced bovine morulae. Theriogenology 52, 497504.CrossRefGoogle ScholarPubMed
Holm, P. & Callesen, H. (1998). In vivo versus in vitro produced bovine ova: similarities and differences relevant for practical application. Reprod. Nutr. Dev. 38, 579–94.CrossRefGoogle ScholarPubMed
Holm, P., Booth, P.J., Schmidt, M.H., Greve, T. & Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683700.CrossRefGoogle ScholarPubMed
Honnor, R.C., Dhillon, G.S. & Londos, C. (1985). cAMP-dependent protein kinase and lipolysis in rat adipocytes. J. Biol. Chem. 260, 15130–8.CrossRefGoogle ScholarPubMed
Imai, K., Kobayashi, S., Goto, Y., Dochi, O. & Shimoshira, I. (1997). Cryopreservation of bovine embryos obtained by in vitro culture of IVM–IVF oocytes in the presence of linoleic acid albumin (abstract). Theriogenology 47, 347.CrossRefGoogle Scholar
International Embryo Transfer Society – IETS (1998). Manual of International Embryo Transfer Society, 3rd edn.IETS, Illinois.Google Scholar
Johnson, S., Wroclawska, E., Bonilla, A. & Moore, K. (2007). In vitro culture of bovine embryos with a serum replacer improves survival following vitrification and warming (abstract). Biol. Reprod. 77, 132.CrossRefGoogle Scholar
Kuzmany, A., Havlicek, V., Wrenzycki, C., Wilkening, S., Brem, G. & Besenfelder, U. (2011). Expression of mRNA, before and after freezing, in bovine blastocysts cultured under different conditions. Theriogenology 75, 482494.CrossRefGoogle ScholarPubMed
Lafontan, M. & Berlan, M. (1993). Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 34, 1057–91.CrossRefGoogle ScholarPubMed
Leivas, F.G., Brum, D.S., Fialho, S.S., Saliba, W.P., Alvim, M.T.T., Bernardi, M.L., Rubin, M.I.B. & Silva, C.A.M. (2011). Fetal calf serum enhances in vitro production of Bos taurus indicus embryos. Theriogenology 75, 429–33.CrossRefGoogle ScholarPubMed
Lonergan, P. & Fair, T. (2008). In vitro-produced bovine embryos-dealing with the warts. Theriogenology 69, 1722.CrossRefGoogle ScholarPubMed
Lonergan, P., Fair, T., Corcoran, D. & Evans, A.C.O. (2006). Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology 65, 137–52.CrossRefGoogle ScholarPubMed
Men, H., Agca, Y., Riley, L.K. & Critser, J.K. (2006). Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology 66, 2008–16.CrossRefGoogle ScholarPubMed
Moore, K., Rodríguez-Sallaberry, C.J., Kramer, J.M., Johnson, S., Wroclawska, E., Goicoa, S. & Niasari-Naslaji, A. (2007). In vitro production of bovine embryos in medium supplemented with a serum replacer: effects on blastocyst development, cryotolerance and survival to term. Theriogenology 68, 1316–25.CrossRefGoogle ScholarPubMed
Mucci, N., Aller, J., Kaiser, G.G., Hozbor, F., Cabodevila, J. & Alberio, R.H. (2006). Effect of estrous cow serum during bovine embryo culture on blastocyst development and cryotolerance after slow freezing or vitrification. Theriogenology 65, 1551–62.CrossRefGoogle ScholarPubMed
Nagashima, H., Kashiwazaki, N., Ashman, R.J.G., Grupen, C.G., Seamark, R.F & Nottle, M.B. (1994). Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling. Biol. Reprod. 51, 618–22.CrossRefGoogle ScholarPubMed
Nagashima, H., Kuwayamat, M., Grupen, C.G., Ashman, R.J. & Nottle, M.B. (1996). Vitrification of porcine early cleavage stage embryos and oocytes after removal of cytoplasmic lipid droplets (abstract). Theriogenology 45, 180.CrossRefGoogle Scholar
Nelson, D.L. & Cox, M.M. (2002). Lehninger Princípios de Bioquímica, 3rd ed.Sarvier, São Paulo, 975 pp.Google Scholar
Parrish, J.J., Krogenaes, A. & Susko-Parrish, J.L. (1995). Effect of bovine sperm separation by either swim-up or Percoll method on success of in vitro fertilization and early embryonic development. Theriogenology 44, 859–69.CrossRefGoogle ScholarPubMed
Paschoal, D.M., Sudano, M.J., Silva, A.O. & Landim-Alvarenga, F.C. (2009). Development of in vitro produced bovine embryos in media with decreasing concentration of fetal calf serum (abstract). Anim. Reprod. 6, 273.Google Scholar
Paschoal, D.M., Sudano, M.J., Magalhães, L.C.O., Crocomo, L.F. & Landim-Alvarenga, F.C. (2010a). Use of forskolin to produce in vitro bovine embryos under two different concentration of fetal calf serum (abstract). Reprod. Fertil. Dev. 22, 303–4.CrossRefGoogle Scholar
Paschoal, D.M., Sudano, M.J., Rascado, T.S., Magalhães, L.C.O., Crocomo, L.F., Lima-Neto, J.F. & Landim-Alvarenga, F.C. (2010b). O forskolin melhora a qualidade de embriões PIV destinados a vitrificação? (abstract). Acta Scientiae Veterinariae 38, 818.Google Scholar
Paschoal, D.M., Sudano, M.J., Rascado, T.S., Magalhães, L.C.O., Crocomo, L.F., Lima-Neto, J.F., Martins, A. Jr. & Landim-Alvarenga, F.C. (2010c). Ultra-structure of bovine IVP embryos cultured in two different serum concentrations and after chemical lipolysis with forskolin (abstract). Biol. Reprod. 83, 59.CrossRefGoogle Scholar
Paschoal, D.M., Sudano, M.J., Rascado, T.S., Magalhães, L.C.O., Crocomo, L.F., Lima-Neto, J.F., Guastali, M.D., Maziero, R.R.D., Martins, A. Jr. & Landim-Alvarenga, F.C. (2011). Vitrification of Bos taurus indicus and Bos taurus indicus × Bos taurus taurus embryos produced in the presence or absence of fetal calf serum (abstract). Reprod. Fertil. Dev. 24, 131–2.CrossRefGoogle Scholar
Pinyopummintr, T. & Bavister, B.D. (1991). In vitro-matured/in vitro-fertilized bovine oocytes can develop into morulae/blastocysts in chemically defined, protein-free culture media. Biol. Reprod. 45, 736–42.CrossRefGoogle ScholarPubMed
Pomar, F.J.R., Teerds, K.J., Kidson, A, Colenbrander, B., Tharasanit, T., Aguilar, B. & Roelen, B.A.J. (2005). Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study. Theriogenology 63, 2254–68.CrossRefGoogle ScholarPubMed
Ptak, G., Dattena, M. & Loi, P. (1999). Ovum pick-up in sheep: efficiency of in vitro production, vitrification and birth offspring. Theriogenology 52, 1105–14.CrossRefGoogle Scholar
Rieger, D., McGrowan, L.T., Cox, S.F., Pugh, P.A. & Thompson, J.G. (2002). Effect of 2,4 dinitrofenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture. Reprod. Fertil. Dev. 14, 339–43.CrossRefGoogle Scholar
Rizos, D., Ward, F., Boland, M.P. & Lonergana, P. (2001). Effect of culture system on the yield and quality of bovine blastocysts as assessed by survival after vitrification. Theriogenology 56, 116.CrossRefGoogle ScholarPubMed
Rizos, D., Ward, F., Duffy, P., Boland, M.P. & Lonergan, P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–8.CrossRefGoogle ScholarPubMed
Rizos, D., Guitiérrez-Adán, A., Pérez-Garnelo, S., De La Fuente, J., Boland, M.P. & Lonergan, N.P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–43.CrossRefGoogle ScholarPubMed
Sata, R., Tsuji, H., Abe, H., Yamashita, S. & Hoshi, H. (1999). Fatty acid composition of bovine embryos cultured in serum free and serum-containing medium during early embryonic development. J. Reprod. Dev. 45, 97103.CrossRefGoogle Scholar
Seamon, K. & Daly, J.W. (1981). Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J. Biol. Chem. 256, 9799–801.CrossRefGoogle Scholar
Seamon, K.B., Padgett, W. & Daly, J.W. (1981). Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. USA 78, 3363–7.CrossRefGoogle ScholarPubMed
Shaw, J.M., Kuleshova, L.L., MacFarlane, D.R. & Trounson, A.O. (1997). Vitrification properties of solutions of ethylene glycol in saline containing Ficoll, PVP, or dextran. Cryobiology 35, 219–29.CrossRefGoogle ScholarPubMed
Sommerfeld, V. & Niemann, H. (1999). Cryopreservation of bovine in vitro produced embryos using ethylene glycol in controlled freezing or vitrification. Cryobiology 38, 95105.CrossRefGoogle ScholarPubMed
Sudano, M.J., Paschoal, D.M., Rascado, T.S., Macedo, C.C., Uliani, R.C. & Landim-Alvarenga, F.C. (2008). Effect of different concentration of fetal calf serum on production and quality of bovine embryo produced in vitro (abstract). Acta Scientiae Veterinariae 36, 495.Google Scholar
Sudano, M.J., Landim-Alvarenga, F.C., Sartori, R. & Machado, R. (2011a). Reuse of norgestomet implants in an eCG-based superovulation protocol administered to Nelore (Bos taurus indicus) cows. Livestock Science 141, 207–12.CrossRefGoogle Scholar
Sudano, M.J., Paschoal, D.M., Rascado, T.S., Magalhães, L.C.O., Crocomo, L.F., Lima-Neto, J.F. & Landim-Alvarenga, F.C. (2011b). Lipid content and apoptosis of in vitro-produced bovine embryos as determinants of susceptibility to vitrification. Theriogenology 75, 1211–20.CrossRefGoogle ScholarPubMed
Sudano, M.J.; Paschoal, D.M.; Rascado, T.S.; Lima-Neto, J.F. & Landim-Alvarenga, F.C. (2011c). The effect of fetal calf serum concentration upon the in vitro Bos taurus indicus × Bos taurus taurus crossbred embryo production and the cytoplasmic lipid accumulation. Veterinária e Zootecnia 8, 123–34.Google Scholar
Thompson, J.G., Allen, N.W., McGowan, L.T., Bell, A.C.S., Lambert, M.G. & Tervit, H.R. (1998). Effect of delayed supplementation of fetal calf serum to culture medium on bovine embryo development in vitro and following transfer. Theriogenology 49, 1239–49.CrossRefGoogle ScholarPubMed
Traldi, A.S., Leboeuf, B., Cognié, Y., Poulin, N. & Mermillod, P. (1999). Comparative results of in vitro and in vivo survival of vitrified in vitro produced goat and sheep embryos (abstract). Theriogenology 51, 175.CrossRefGoogle Scholar
Van Wagtendonk-De Leeuw, A.M., Den Daas, J.H.G. & Rall, W.F. (1997). Field trial to compare pregnancy rates of bovine embryo cryopreservation methods: Vitrification and one-step dilution versus slow freezing and three-step dilution. Theriogenology 48, 1071–84.CrossRefGoogle ScholarPubMed
Visintin, J.A., Martins, J.F.P., Bevilacqua, E.M., Mello, M.R.B., Nicácio, A.C. & Assumpção, M.E.O.A. (2002). Cryopreservation of Bos taurus vs Bos indicus embryos: are they really different? Theriogenology 57, 345–59.CrossRefGoogle ScholarPubMed
Wolfe, J. & Bryant, G. (1999). Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology 39, 103–29.CrossRefGoogle ScholarPubMed
Yu, X.L., Deng, W., Liu, F.J., Li, Y.H., Li, X.X., Zhang, Y.L. & Zan, L.S. (2010). Closed pulled straw vitrification of in vitro–produced and in vivo–produced bovine embryos. Theriogenology 73, 474–9.CrossRefGoogle ScholarPubMed
Zanenga, C.A. (1993). Freezing on zebu embryos – Development and viability. In X Congresso Brasileiro de Reprodução Animal. Belo Horizonte, MG, Brazil.Google Scholar