Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T08:33:47.212Z Has data issue: false hasContentIssue false

Embryonic stem cells in farm animals

Published online by Cambridge University Press:  26 September 2008

C. Galli*
Affiliation:
Laboratorio di Tecnologie della Riproduzine, Cremona, Italy, Department of Development and Signalling, The Babraham Institute, Cambridge, UK, and Unité de Biologie Cellulaire et de Microscopie Electronique, Jouy-en-Josas, France.
G. Lazzari
Affiliation:
Laboratorio di Tecnologie della Riproduzine, Cremona, Italy, Department of Development and Signalling, The Babraham Institute, Cambridge, UK, and Unité de Biologie Cellulaire et de Microscopie Electronique, Jouy-en-Josas, France.
J.E. Flechon
Affiliation:
Laboratorio di Tecnologie della Riproduzine, Cremona, Italy, Department of Development and Signalling, The Babraham Institute, Cambridge, UK, and Unité de Biologie Cellulaire et de Microscopie Electronique, Jouy-en-Josas, France.
R.M. Moor
Affiliation:
Laboratorio di Tecnologie della Riproduzine, Cremona, Italy, Department of Development and Signalling, The Babraham Institute, Cambridge, UK, and Unité de Biologie Cellulaire et de Microscopie Electronique, Jouy-en-Josas, France.
*
C. Galli, LTR CIZ, Via Porcellasco 7/f, I-26100 Cremona, Italy. Telephone: 39 372 437242. Fax: 39 372 436133.

Extract

Embryonic stem cell technology is now well established in the mouse (reviewed by Robertson, 1987). This technology implies the isolation from the preimplantation embrao of a cell line (ES) that is cultured in vitro in an undifferentiated state. Embryonal carcinoma cells (EC) lines obtained from malignant tumours (Martin, 1975), together with all the information available on their culture requirements (reviewed by Heath, 1987), represented a very important starting point for the establishment of ES cells (Martin, 1981). ES cells share many characteristics with EC cells such as the ability to contribute to somatic tissues of animals obtained following injection of cells into a host blastocyst, to differentiate in vitro under appropriate stimuli (Rudnicki & McBurney, 1987) and to form retransplantable tumours. ES cells, however, have substantial advantages over EC cells in that they can be derived directly from a normal embryo, they maintain a normal karyotype and when reintroduced into a host blastocyst they can colonise the germ line (Bradley, 1987). ES cells are maintained in an undifferentiated state by the presence of feeder layers producing various factor(s) that prevent to the cells from differentiating. It has been shown that glycoproteins are responsible for this effect and these have been named according to their different activities: DIA, differentiation inhibitory activity (Smith & Hooper, 1987); LIF, leukaemia inhibiting factor (Smith et al, 1988; Williams et al, 1988); HILDA, human interleukin for DA cells (Moreau et al., 1988). It is now possible to establish and maintain ES cells in culture in the absence of feeders cells but in the presence of such factors (Nichols et al., 1990).

Type
Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradley, A.. (1987). Production and analysis of chimeric mice. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, ed. Robertson, E, pp. 113–51. Oxford:IRL Press.Google Scholar
DeFelici, M., McLaren, A.. (1983). In vitro culture of mouse primordial germ cells. Exp. Cell Res. 144, 417–27.Google Scholar
DeFelci, M., Dolci, S., Pesce, M.. (1992). Cellular and molecular aspects of mouse primordial germ cell migration and proliferation in culture. Int. J. Dev. Biol. 36, 205–13.Google Scholar
Doetschman, T., Williams, P., Maeda, N.. (1988). Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev. Biol. 127, 224–7.CrossRefGoogle ScholarPubMed
Dolci, S., Pesce, M.. & DeFelici, M.. (1993). Combined action of stem cell factor, leukaemia inhibitory lactor, and CAMP on in vitro proliferation of mouse primordial germ cells. Mol. Reprod. Dev. 35 134–9.CrossRefGoogle Scholar
Evans, M.J., Notarianni, E., Laurie, S., Moor, R.M.. (1990). Derivation and preliminary characterisation of pluripotent cell lines from porcine and bovine embryos. Theriogenology 33, 125–8.CrossRefGoogle Scholar
Flechon, J.E., Notarianni, E., Laurie, S., Galli, C., Evans, M., & Moor, R.M.. (1990). Characterisation of ovine and porcine embryonic stem cells. J. Reprod. Fert. Abstr. Ser. 6, 40.Google Scholar
Galli, C., Laurie, S., Lazzari, G., Moor, R.M.. (1991). Nuclear transplantation (by electrofusion) of cultured embryonic cells with Met II cytoplasts in the sheep. In Annual Conference of the Italian Society of Veterinary Science, vol.45, pp. 299303.Google Scholar
Giles, J.R., Yang, X., Mark, W., Foote, R.H.. (1993). Pluripotency of cultured rabbit inner eye pigmentation of fetuses following injection into blastocysts or morulae. Mol. Reprod. Dev. 36, 130–8.CrossRefGoogle ScholarPubMed
Godin, I., Deed, R., Cooke, J., Zsebo, K., Dexter, M., Wylie, C.. (1991). Effects of the steel gene on mouse primodial germ cells in culture. Nature 352, 807–9.CrossRefGoogle Scholar
Graves, K.H., Moreadith, R.W.. (1993). Derivation and characterisation of putative pluripotential embryonic stem cells from preimplanation rabbit embryos. Mol. Reprod. Dev. 36, 424–33.CrossRefGoogle Scholar
Heath, J.K.. (1987). Experimental analysis of teratocarcinoma cell multiplication and purification of embryonal carcinoma-derived growth factor. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, ed. Robertson, E, pp. 183206. Oxford: IRL Press.Google Scholar
HochereaudeReviers, M.T., Perreau, C.. (1993). In vitro culture of embryonic disc cells from porcine blastocysts. Reprod. Nutr. Dev. 33, 475–83.CrossRefGoogle Scholar
Hoger, T.H., Grund, C., Franke, W.W., Krohne, G.. (1991). Immunolocalization of lamins in the thick nuclear lamina of human synovial cells. Eur. J. CellBiol. 54, 150–6.Google ScholarPubMed
Holthofer, H., Mietiinen, A., Paasivuo, R., Lehto, V.P., Linder, E., Alfthan, O., Virtanen, I.. (1983).Cellular origin and differentiation of renal carcinomas. Lab. Invest. 49 317–26.Google ScholarPubMed
Keefer, C.L., Stice, S.L., Matthews, D.L.. (1994). Bovine inner cell mass cells as donor nuclei in the production of nuclear transfer embryos and calves. Biol. Reprod. 50, 935–9.CrossRefGoogle ScholarPubMed
Lebel, S., Lampron, C., Royal, A., Raymond, Y.. (1987). Lamins A and C appear during retinoic acid-induced differentation of mouse embryonal carcinoma cells. J. Cell. Biol. 105, 1099–104.CrossRefGoogle Scholar
Martin, G.R.. (1975). Teratocarcinomas as a model system for the study of embryogenesis and neoplasia. Cell, 5, 229–43.CrossRefGoogle Scholar
Martin, G.R.. (1981). Isolation of a pluripotential line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA, 78, 7634–8.CrossRefGoogle Scholar
Matsui, Y., Toksoz, D., Nishikawas, S., Nishikawa, S., Williams, D., Zsebo, K., Hogan, BLM. (1991). Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cell in culture. Nature 353, 750–2.CrossRefGoogle Scholar
Matsui, Y., Zsebo, K., Hogan, BLM. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–7.CrossRefGoogle ScholarPubMed
MeineckeTillmann, S., Meinecke, B.. (1991). Experiments on the establishment in culture of pluripotential cell lines from sheep, goat and pig embryos. In Seventh Scientific Meeting of the AETE, Cambridge, 14–15 September, p. 178.Google Scholar
Moor, R.M., Sun, F.Z., Galli, C.. (1992). Reconstruction of ungulate embryos by nuclear transplantation. Anim. Reprod. Sci. 28, 423–31.CrossRefGoogle Scholar
Moreau, J.F., Donaldson, D.D., Bennett, F., WitekGiannitti, J., Clark, S.C., Wong, G.G.. (1988). Leukaemia inhibitory factor is indentical to the myeloid growth factor human interleukin for DA cells. Nature 336, 690–2.CrossRefGoogle Scholar
Nichols, J., Evans, E.P., Smith, A.G.. (1990). Establishment of germline-competent embryonic stem (es) cell using differentiation-inhibiting activity/lif. Development 110, 1341–8.CrossRefGoogle Scholar
Notarianni, E., Laurie, S., Moor, R.M.& Evans, M.J. (1990a). Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J. Reprod. Fert. Suppl. 41, 51–6.Google ScholarPubMed
Notarianni, E., Galli, C., Laurie, S., Moor, R.M. & Evans, M.J.. (1990b). Derivation of plunpotent, embryonic cell lines from porcine and ovine blastocysts. In Proceedings of the 4th World Congress on Genetics Applied to Livestock Production, pp. 5864. Edinburgh, 23–27 July 1990.Google Scholar
Piedrahita, J.A., Anderson, G.B.. & BonDurant, R.H.. (1990a). Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology 34, 865–77.CrossRefGoogle ScholarPubMed
Piedrahita, J.A., Anderson, G.B..& BonDurant, R.H.. (1990b). On the isolation of embryonic stem cell; comparative behaviour of murine, porcine and ovine embryos. Theriogenology 34, 879901.CrossRefGoogle ScholarPubMed
Resnick, J.L., BixIer, L.S., Cheng, L.. & Donovan, P.J.. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–1.CrossRefGoogle ScholarPubMed
Robertson, E.. (1987). Embryo-derived stem cell lines. InTeratocarcinomas and Embryonic Stem Cells; A Practical Approach, ed. Robertson, E, pp. 71112. Oxford: IRL Press.Google Scholar
Rudnicki, M.A.. & McBurney, M.W.. (1987). Cell culture methods and induction of differentiation of embryonal carcinoma cell lines. In Teratocarcinomas and Embryonic Stem Cells; A Practical Approach, ed. Robertson, E, pp. 1949. Oxford: IRL Press.Google Scholar
Saito, S., Strelcenko, N.. & Niemann, H.. (1992). Bovine embryonic stem cell-like cell lines cultured over several passages. Rouxs Arch. Dev. Biol. 201, 134–41.CrossRefGoogle ScholarPubMed
Schellander, K., Hassan-Hauser, C., Fuhrer, F., Korb, H.. & Schieger, W.. (1989). Culture of bovine embryos for stem cell production. Theriogenology 31, 254.CrossRefGoogle Scholar
Smith, A.G.. & Hooper, M.L.. (1987). Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol. 121, 19.CrossRefGoogle ScholarPubMed
Smith, L.C.. & Wilmut, I.. (1989). Influence of nuclear and cytoplasmic activity on the development in vivo of sheep embryos after nuclear transplantation. Biol. Reprod. 40, 1027–35.CrossRefGoogle ScholarPubMed
Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M.. & Rogers, D.. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–90.CrossRefGoogle ScholarPubMed
Stewart, C.. & Burke, B.. (1987). Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin b. Cell 51, 383–92.CrossRefGoogle Scholar
Stewart, C.L., Gadi, I.. & Bhaff, H.. (1994). Stem cell from primordial germ cells can re-enter the germ line. Den. Biol. 161, 626–8.CrossRefGoogle Scholar
Stice, S., Strelchenko, N., Betthauser, J., Scott, B., Jurgella, G., Jackson, J., David, V., Reefer, C.. & Matthews, L.. (1994). Bovine pluripotent embryonic cells contribute to nuclear transfer and chimeric fetuses. Theriogenology 41, 301.CrossRefGoogle Scholar
Strojek, R.M., Reed, M.A., Hoover, J.L.. & Wagner, T.E.. (1990). A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology 33, 901–13.CrossRefGoogle ScholarPubMed
Sukoyan, M.A., Golubitsa, A.N., Zhelezova, A.l., Shiov, A.G., Vatolin, S.Y., Maximovsky, L.P., Andreeva, L.E., McWhir, J., Pack, S.D., Bayborodin, S.I., Kerkis, A.Y., Kiziova, H.I.& Serov, O.L.. (1992). Isolation and cultivation of blastocystderived stem cell lines from American mink (Mustela olson). Mol. Reprod. Dee. 33, 418–31.CrossRefGoogle Scholar
Sukoyan, M.A., Vatolin, S.Y., Golubitsa, A.N., Zhelezova, A.I., Semenova, L.A.. & Serov, O.L.. (1992). Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: comparisons of their pluripotencies. Mol. Reprod. Dee. 36, 148–58.CrossRefGoogle Scholar
Talbot, N.C., Rexroad, C.E., Pursel, V.G.. & Powell, A.M.. (1993). Alkaline phosphatase staining of pig and sheep epiblast cells in culture. Mol. Reprod. Dee. 36, 139–47.CrossRefGoogle ScholarPubMed
Wheeler, M.B.. (1994). Development and validation of swine embryonic stem cells. Reprod. Fert. Dee. (in press).CrossRefGoogle Scholar
Willadsen, S.M.. (1986). Nuclear transplantation in sheep embryos. Nature 320, 63–5.CrossRefGoogle ScholarPubMed
Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L., Gearing, D.P., Wagner, E.F., Metcalf, D., Nicola, N.A. & Gough, N.M.. (1988). Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–7.CrossRefGoogle ScholarPubMed