Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T01:33:31.021Z Has data issue: false hasContentIssue false

Effects of antifreeze protein from Lolium perenne L. (LpAFP) in the vitrification of in vitro-produced bovine embryos

Published online by Cambridge University Press:  27 June 2023

R.A. Silva Júnior*
Affiliation:
Laboratório de Biotécnicas Aplicadas à Reprodução, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
R. Desenzi
Affiliation:
Laboratório de Biotécnicas Aplicadas à Reprodução, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
M.M.S. Ramires
Affiliation:
Departamento de Zootecnia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
A.F. Souza
Affiliation:
Departamento de Zootecnia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
M.A.M. Donato
Affiliation:
Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
C.A. Peixoto
Affiliation:
Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM, CNPq), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
T. Nascimento
Affiliation:
Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
C.C. Bartolomeu
Affiliation:
Laboratório de Biotécnicas Aplicadas à Reprodução, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
A.M. Batista*
Affiliation:
Laboratório de Biotécnicas Aplicadas à Reprodução, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
*
Corresponding authors: R.A. Silva Júnior; Email: [email protected]; A.M. Batista; Email: [email protected]
Corresponding authors: R.A. Silva Júnior; Email: [email protected]; A.M. Batista; Email: [email protected]

Summary

In the present study, the cryoprotective effects of Lolium perenne antifreeze protein (LpAFP) on the vitrification of bovine embryos were evaluated. In vitro-produced blastocysts were divided into two groups: the control group (CG) without the addition of LpAFP and the treatment group (TG) with the addition of 500 ng/ml of LpAFP in the equilibrium and vitrification solution. Vitrification was carried out by transferring the blastocysts to the equilibrium solution [7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO)] for 2 min and then to the vitrification solution (15% EG, 15% DMSO and 0.5M sucrose). The blastocysts were deposited on a cryotop device and submerged in liquid nitrogen. Warming was carried out in three steps in solutions with different sucrose concentrations (1.0, 0.5, and 0.0 M, respectively). Embryos were evaluated for re-expansion/hatching, the total cell count, and ultrastructural analysis. There was no significant difference in the re-expansion rate 24 h after warming; however, there was variation (P < 0.05) in the hatching rate in the TG and the total number of cells 24 h after warming was higher in the TG (114.87 ± 7.24) when compared with the CG (91.81 ± 4.94). The ultrastructural analysis showed changes in organelles related to the vitrification process but, in the TG, there was less damage to mitochondria and rough endoplasmic reticulum compared with the CG. In conclusion, the addition of 500 ng/ml of LpAFP during the vitrification of in vitro-produced bovine embryos improved the hatching rate and total cell number of blastocysts after warming and mitigated intracellular damage.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arshad, U., Sagheer, M., González-Silvestry, F. B., Hassan, M. and Sosa, F. (2021). Vitrification improves in-vitro embryonic survival in Bos taurus embryos without increasing pregnancy rate post embryo transfer when compared to slow-freezing: A systematic meta-analysis. Cryobiology, 101, 111. doi: 10.1016/j.cryobiol.2021.06.007 CrossRefGoogle ScholarPubMed
Baguisi, A., Arav, A., Crosby, T. F., Roche, J. F. and Boland, M. P. (1997). Hypothermic storage of sheep embryos with antifreeze proteins: Development in vitro and in vivo. Theriogenology, 48(6), 10171024. doi: 10.1016/s0093-691x(97)00328-2 CrossRefGoogle ScholarPubMed
Barroso, P. A. A., Paulino, L. R. F. M., Silva, B. R., Vasconcelos, G. L., Gomes, D. S., Lima Neto, M. F., Silva, A. W. B., Souza, A. L. P., Donato, M. A. M., Peixoto, C. A. and Silva, J. R. V. (2020). Effects of dexamethasone on growth, viability and ultrastructure of bovine secondary follicles cultured in vitro. Zygote, 28(6), 504510. doi: 10.1017/S0967199420000416 CrossRefGoogle ScholarPubMed
, G. A. and Mapletoft, R. J. (2013). Evaluation and classification of bovine embryo. Animal Reproduction, 10(3), 344348.Google Scholar
Capicciotti, C. J., Poisson, J. S., Boddy, C. N. and Ben, R. N. (2015). Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation. Cryobiology, 70(2), 7989. doi: 10.1016/j.cryobiol.2015.01.002 CrossRefGoogle ScholarPubMed
Chaves, D. F., Campelo, I. S., Silva, M. M. A. S., Bhat, M. H., Teixeira, D. I. A., Melo, L. M., Souza-Fabjan, J. M. G., Mermillod, P. and Freitas, V. J. F. (2016). The use of antifreeze protein type III for vitrification of in vitro matured bovine oocytes. Cryobiology, 73(3), 324328. doi: 10.1016/j.cryobiol.2016.10.003 CrossRefGoogle ScholarPubMed
Chrenek, P., Makarevich, A. V., Popelková, M., Schlarmannová, J., Toporcerová, S., Ostró, A., Živčák, J. and Bosze, Z. (2014). Ultrastructure of vitrified rabbit transgenic embryos. Zygote, 22(4), 558564. doi: 10.1017/S0967199413000282 CrossRefGoogle ScholarPubMed
Correia, L. F. L., Alves, B. R. C., Batista, R. I. T. P., Mermillod, P. and Souza-Fabjan, J. M. G. (2021). Antifreeze proteins for low-temperature preservation in reproductive medicine: A systematic review over the last three decades. Theriogenology, 176, 94103. doi: 10.1016/j.theriogenology.2021.09.025 CrossRefGoogle ScholarPubMed
Dalcin, L., Silva, R. C., Paulini, F., Silva, B. D., Neves, J. P. and Lucci, C. M. (2013). Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos. Cryobiology, 67(2), 137145. doi: 10.1016/j.cryobiol.2013.05.012 CrossRefGoogle ScholarPubMed
Darvelid, U., Gustafsson, H., Shamsuddin, M., Larsson, B. and Rodriguez Martinez, H. (1994). Survival rate and ultrastructure of vitrified bovine in vitro and in vivo developed embryos. Acta Veterinaria Scandinavica, 35(4), 417426. doi: 10.1186/BF03548317 CrossRefGoogle ScholarPubMed
Davies, P. L. and Graham, L. A. (2018). Protein evolution revisited. Systems Biology in Reproductive Medicine, 64(6), 403416. doi: 10.1080/19396368.2018.1511764 CrossRefGoogle ScholarPubMed
Do, V. H., Catt, S., Kinder, J. E., Walton, S. and Taylor-Robinson, A. W. (2019). Vitrification of in vitro-derived bovine embryos: Targeting enhancement of quality by refining technology and standardising procedures. Reproduction, Fertility, and Development, 31(5), 837846. doi: 10.1071/RD18352 CrossRefGoogle ScholarPubMed
Fabian, D., Gjørret, J. O., Berthelot, F., Martinat-Botté, F. and Maddox-Hyttel, P. (2005). Ultrastructure and cell death of in vivo derived and vitrified porcine blastocysts. Molecular Reproduction and Development, 70(2), 155165. doi: 10.1002/mrd.20129 CrossRefGoogle ScholarPubMed
Ferré, L. B., Kjelland, M. E., Taiyeb, A. M., Campos-Chillon, F. and Ross, P. J. (2020). Recent progress in bovine in vitro-derived embryo cryotolerance: Impact of in vitro culture systems, advances in cryopreservation and future considerations. Reproduction in Domestic Animals, 55(6), 659676. doi: 10.1111/rda.13667 CrossRefGoogle ScholarPubMed
Ideta, A., Aoyagi, Y., Tsuchiya, K., Nakamura, Y., Hayama, K., Shirasawa, A., Sakaguchi, K., Tominaga, N., Nishimiya, Y. and Tsuda, S. (2015). Prolonging hypothermic storage (4°C) of bovine embryos with fish antifreeze protein. Journal of Reproduction and Development, 61(1), 16. doi: 10.1262/jrd.2014-073 CrossRefGoogle ScholarPubMed
Lagneaux, D., Huhtinen, M., Koskinen, E. and Palmer, E. (1997). Effect of anti-freeze protein (AFP) on the cooling and freezing of equine embryos as measured by DAPI-staining. Equine Veterinary Journal. Supplement, 25, 8587. doi: 10.1111/j.2042-3306.1997.tb05108.x Google Scholar
Lauersen, K. J., Brown, A., Middleton, A., Davies, P. L. and Walker, V. K. (2011). Expression and characterization of an antifreeze protein from the perennial rye grass, Lolium perenne. Cryobiology, 62(3), 194201. doi: 10.1016/j.cryobiol.2011.03.003 CrossRefGoogle ScholarPubMed
Lee, H. H., Lee, H. J., Kim, H. J., Lee, J. H., Ko, Y., Kim, S. M., Lee, J. R., Suh, C. S. and Kim, S. H. (2015). Effects of antifreeze proteins on the vitrification of mouse oocytes: Comparison of three different antifreeze proteins. Human Reproduction, 30(9), 21102119. doi: 10.1093/humrep/dev170 CrossRefGoogle ScholarPubMed
Li, X., Wang, L., Yin, C., Lin, J., Wu, Y., Chen, D., Qiu, C., Jia, B., Huang, J., Jiang, X., Yang, L. and Liu, L. (2020). Antifreeze protein from Anatolia polita (ApAFP914) improved outcome of vitrified in vitro sheep embryos. Cryobiology, 93, 109–114. doi: 10.1016/j.cryobiol.2020.02.001 CrossRefGoogle ScholarPubMed
Liang, S., Yuan, B., Jin, Y. X., Zhang, J. B., Bang, J. K. and Kim, N. H. (2017). Effects of antifreeze glycoprotein 8 (AFGP8) supplementation during vitrification on the in vitro developmental capacity of expanded bovine blastocysts. Reproduction, Fertility, and Development, 29(11), 21402148. doi: 10.1071/RD16426 CrossRefGoogle ScholarPubMed
Middleton, A. J., Marshall, C. B., Faucher, F., Bar-Dolev, M., Braslavsky, I., Campbell, R. L., Walker, V. K. and Davies, P. L. (2012). Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. Journal of Molecular Biology, 416(5), 713724. doi: 10.1016/j.jmb.2012.01.032 CrossRefGoogle Scholar
Ohboshi, S., Fujihara, N., Yoshida, T. and Tomagane, H. (1998). Ultrastructure of bovine in vitro-produced blastocysts cryopreserved by vitrification. Zygote, 6(1), 1726. doi: 10.1017/s0967199400005049 CrossRefGoogle ScholarPubMed
Ordóñez-León, E. A., Martínez-Rodero, I., García-Martínez, T., López-Béjar, M., Yeste, M., Mercade, E. and Mogas, T. (2022). Exopolysaccharide ID1 improves post-warming outcomes after vitrification of in vitro-produced bovine embryos. International Journal of Molecular Sciences, 23(13), 7069. doi: 10.3390/ijms23137069 CrossRefGoogle ScholarPubMed
Robles, V., Valcarce, D. G. and Riesco, M. F. (2019). The use of antifreeze proteins in the cryopreservation of gametes and embryos. Biomolecules, 9(5), 181. doi: 10.3390/biom9050181 CrossRefGoogle ScholarPubMed
Rubinsky, B., Arav, A. and Devries, A. L. (1992). The cryoprotective effect of antifreeze glycopeptides from Antarctic fishes. Cryobiology, 29(1), 6979. doi: 10.1016/0011-2240(92)90006-n CrossRefGoogle ScholarPubMed
Sandve, S. R., Kosmala, A., Rudi, H., Fjellheim, S., Rapacz, M., Yamada, T. and Rognli, O. A. (2011). Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Science, 180(1), 6977. doi: 10.1016/j.plantsci.2010.07.011 CrossRefGoogle ScholarPubMed
Sun, W. S., Jang, H., Kwon, H. J., Kim, K. Y., Ahn, S. B., Hwang, S., Lee, S. G., Lee, J. H., Hwang, I. S. and Lee, J. W. (2020). The protective effect of Leucosporidium-derived ice-binding protein (LeIBP) on bovine oocytes and embryos during vitrification. Theriogenology, 151, 137143. doi: 10.1016/j.theriogenology.2020.04.016 CrossRefGoogle ScholarPubMed
Valente, R. S., Almeida, T. G., Alves, M. F., Paschoal, D. M., Basso, A. C. and Sudano, M. J. (2020). Cellular and apoptotic status monitoring according to the ability and speed to resume post-cryopreservation embryonic development. Theriogenology, 158, 290296. doi: 10.1016/j.theriogenology.2020.09.026 CrossRefGoogle Scholar
Valente, R. S., Marsico, T. V. and Sudano, M. J. (2022). Basic and applied features in the cryopreservation progress of bovine embryos. Animal Reproduction Science, 239, 106970. doi: 10.1016/j.anireprosci.2022.106970 CrossRefGoogle ScholarPubMed