Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T07:24:02.841Z Has data issue: false hasContentIssue false

Effect of temperature during embryonic development and first feeding of Trichogaster leeri larvae

Published online by Cambridge University Press:  03 May 2016

Samuel Louzada Pereira*
Affiliation:
State University of North Fluminense Darcy Ribeiro, Laboratory of Animal Science and Animal Nutrition, CEP – 28013–602, Campos dos Goytacazes, RJ, Brazil.
Dalcio Ricardo de Andrade
Affiliation:
State University of North Fluminense Darcy Ribeiro, Laboratory of Animal Science and Animal Nutrition, CEP, Campos dos Goytacazes, RJ, Brazil.
Marcella Costa Radael
Affiliation:
State University of North Fluminense Darcy Ribeiro, Laboratory of Animal Science and Animal Nutrition, CEP, Campos dos Goytacazes, RJ, Brazil.
João Carlos Fosse Filho
Affiliation:
State University of North Fluminense Darcy Ribeiro, Laboratory of Animal Science and Animal Nutrition, CEP, Campos dos Goytacazes, RJ, Brazil.
Rafael Vieira de Azevedo
Affiliation:
State University of North Fluminense Darcy Ribeiro, Laboratory of Animal Science and Animal Nutrition, CEP, Campos dos Goytacazes, RJ, Brazil.
Douglas da Cruz Mattos
Affiliation:
State University of North Fluminense Darcy Ribeiro, Laboratory of Animal Science and Animal Nutrition, CEP, Campos dos Goytacazes, RJ, Brazil.
Manuel Vazquez Vidal Junior
Affiliation:
State University of North Fluminense Darcy Ribeiro, Laboratory of Animal Science and Animal Nutrition, CEP, Campos dos Goytacazes, RJ, Brazil.
*
All correspondence to: Samuel Louzada Pereira. State University of North Fluminense Darcy Ribeiro, Laboratory of Animal Science and Animal Nutrition, CEP – 28013–602, Campos dos Goytacazes, RJ, Brazil. E-mail: [email protected]

Summary

Temperature is an environmental factor that influences the development of fish, and when changed abruptly can lead to high mortality. Some species of fish are influenced by this factor, exhibiting a longer time for embryonic development and time to first feeding. This study aims to evaluate the effect of water temperature on embryonic and larval development up to first feeding, to describe the time in hours post fertilization (hpf) of the emergence of different structures and to determine the best hatching rate and survival of animals under different treatments. Five different egg incubation temperatures were used (24, 26, 28, 30 or 32°C, respectively). The eggs were observed at regular intervals of 30 min up to 24 h, every 2 h until 48 h and every 4 h until the display of first feeding in all treatments. Embryonic development was longer for eggs incubated at 24°C and the best results for hatching rate and survival of spawning efficiency were at 28°C. We recommend that incubation of Trichogaster leeri eggs is carried out at 28°C up to the first feeding of larvae.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, M.S.D. & Moura, A. (1992). Estádios de desenvolvimento embrionário de curimatá-pioa Prochilodus affinis (Reinhardt, 1874) (Pisces, Prochilodontidae). [Embryonic stages of curimatá-pioa Prochilodus affinis (Reinhardt, 1874) (Pisces, Prochilodontidae).] In: Meeting in Aquaculture Annual Minas Gerais 10, Belo Horizonte (Brasil), pp. 61–71.Google Scholar
Aritaki, M. & Seikai, T. (2004). Temperature effects on early development and occurrence of metamorphosis-related morphological abnormalities in hatchery-reared brown sole Pseudopleuronectes herzensteini . Aquaculture 240, 517–30.CrossRefGoogle Scholar
Blanco-Vives, B., Villamizar, N., Ramos, J., Bayarri, M.J., Chereguini, O. & Sánchez-Vázquez, F.J. (2010). Effect of daily thermo- and photo-cycles of different light spectrum on the development of Senegal sole (Solea senegalensis) larvae. Aquaculture 306, 137–45.Google Scholar
Berlinsky, D.L., Taylor, J.C., Howell, R.A. & Bradley, T.M. (2004). The effects of temperature and salinity on early life stages of black sea bass Centropristis striata . J. World Aquacult. Soc. 35, 335–44.CrossRefGoogle Scholar
Bemvenuti, M.A. & Fischer, L.G. (2010). Peixes: morfologia e adaptações. [Fish: morphology and adaptations.] Cadernos de Ecologia Aquática 5, 3154.Google Scholar
Bustos, C.A., Landaeta, M.F., Bay-Schmith, E., Lewis, R. & Moraga, X. (2007). Effects of temperature and lipid droplet adherence on mortality of hatchery-reared southern hake Merluccius australis larvae. Aquaculture 270, 535–40.Google Scholar
Dionısio, G., Campos, C., Valente, L.M.P., Conceição, L.E.C., Cancela, M.L. & Gavaia, P.J. (2012). Effect of egg incubation temperature on the occurrence of skeletal deformities in Solea senegalensis . J. Appl. Ichthyol. 28, 471–76.CrossRefGoogle Scholar
Dou, S.Z., Masuda, R., Tanaka, M. & Tsukamoto, K. (2005). Effects of temperature and delayed initial feeding on the survival and growth of Japanese flounder larvae. J. Fish Biol. 66, 362–77.Google Scholar
Duarte, S.C., Vasconcellos, B.F., Vidal, M.V. Jr., Ferreira, A.V., Mattos, D.C. & Branco, A.T. (2012). Ontogeny and embryonic description of Betta splendens, Perciformes (Regan, 1910). Rev. Bras. de Saúde e Prod. Animal 13, 880–93.Google Scholar
Engrola, S., Conceição, L.E.C., Gavaia, P.J., Cancela, M.L. & Dinis, M.T. (2005). Effects of pre-weaning feeding frequency on growth, survival, and deformation of Senegalese sole, Solea senegalensis (Kaup, 1858). Isr. J. Aquacult. 57, 10–8.Google Scholar
Engrola, S., Figueira, L., Conceição, L.E.C., Gavaia, P.J., Ribeiro, L. & Dinis, M.T. (2009). Co-feeding in Senegalese sole larvae with inert diet from mouth opening promotes growth at weaning. Aquaculture 288, 264–72.CrossRefGoogle Scholar
Faustino, F., Nakaghi, L.S.O., Marques, C., Makino, L.C. & Senhorini, J.A. (2007). Fertilização e desenvolvimento embrionário: morfometria e análise estereomicroscópica dos ovos dos híbridos de surubins (pintado Pseudoplatystoma corruscans × cachara, Pseudoplatystoma fasciatum). [Fertilization and embrionary development: morphometry and stereomicroscopic analysis of hybrids' eggs from surubins (pintado, Pseudoplatystoma corruscans and cachara, Pseudoplatystoma fasciatum).] Acta Sci. Biol. Sci. 29, 4955.CrossRefGoogle Scholar
Fernandez, I., Pimentel, M.S., Ortiz-Delgado, J.B., Hontoria, F., Sarasquete, C., Estevez, A., Zambonino-Infante, J.L. & Gisbert, E. (2009). Effect of dietary vitamin A on Senegalese sole (Solea senegalensis) skeletogenesis and larval quality. Aquaculture 295, 250–65.Google Scholar
Ferreira, A.V. (2007). Ontogenia inicial e consumo de vitelo em malanotênia maçã (Glossolepis incisus, Weber, 1907), [Early ontogeny and consumption of veal in melanotênia apple (Glossolepis incisus, Weber, 1907),] 64 pp. Dissertação. Universidade Estadual Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes.Google Scholar
Fielder, D.S., Bardsley, W.J., Allan, G.L. & Pankhurst, P.M. (2005). The effects of salinity and temperature on growth and survival of Australian snapper, Pagrus auratus larvae. Aquaculture 250, 201–14.Google Scholar
Fujimoto, T., Kataoka, T., Sakao, S., Saito, T., Yamaha, E. & Arai, K. (2006). Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus). Zool. Soc. Jpn 23, 977–89.Google ScholarPubMed
Fukuhara, O. (1990). Effects of temperature on yolk utilization, initial growth, and behavior of unfed marine fish-larvae. Mar. Biol. 106, 169–74.CrossRefGoogle Scholar
Guevara, M.P. & Guevara, V.A. (2008) Zooplancton en la larvicultura de peces neotropicales. [Zooplankton in larviculture of neotropical fishes.] Revista MVZ Córdoba 13, 1415–25.Google Scholar
Godinho, H.P., Santos, J.E. & Sato, Y. (2003). Ontogênese larval de cinco espécies de peixes do São Francisco, [Larval ontogenesis of five species of fish of San Francisco] pp. 133–48. In: Godinho, H.P. & Godinho, A.L. (eds.). Águas, Peixes e Pescadores do São Francisco das Minas Gerais. Belo Horizonte: PUC Minas, 468 pp.Google Scholar
Howell, W.H. & Caldwell, M.A. (1984). Influence of temperature on energy utilization and growth of embryonic and prolarval american plaice, Hippoglossoides platessoides . J. Exp. Mar. Biol. Ecol. 19, 173–89.Google Scholar
Humphrey, C., Klumpp, D.W., & Pearson, R. (2003). Early development and growth of the east rainbowfish, Melanotaenia splendida splendida . Mar. Freshwater Res. 53, 1725.CrossRefGoogle Scholar
Mahmud, Z., Ahmed, F., Ghosh, A.K., Azad, M.A.K., Bir, J., & Rahaman, S.M.B. (2011). Induced breeding, embryonic and larval development of comet gold fish (Carassius auratus) in Khulna, Bangladesh. Int. J. Biosci. 10, 2838.Google Scholar
Marimuthu, K. & Haniffa, M.A. (2007). Embryonic and larval development of the striped snakehead Channa striatus . Taiwania 52, 8492.Google Scholar
Mattos, D. C., Cardoso, L. D., Fosse, P. J., Radael, M. C., Fosse Filho, J. C., Manhães, J. V. A., Andrade, D. R. & Vidal, M. V. Jr (2015). Description of the ontogenic and larval period of discus fish (Symphysodon aequifasciatus). Zygote 23, 460–6.Google Scholar
Nakatani, K., Agostinho, A.A., Baumgartner, G., Bialetzki, A., Sanches, P.V., Makrakis, M.C. & Pavanelli, C.S. (2001). Ovos e larvas de peixes de água doce. [Eggs and freshwater fish larvae.] Maringá: UEM, 378 pp.Google Scholar
Olaniyi, W.A. & Omitogun, O.G. (2013). Stages in the early and larval development of the African catfish Clarias gariepinus (Teleostei, Clariidae). Zygote 22, 314–30.CrossRefGoogle ScholarPubMed
Olaniyi, W.A. & Omitogun, O.G. (2014). Embryonic and larval developmental stages of African giant catfish Heterobranchus bidorsalis (Geoffroy Saint Hilaire, 1809) (Teleostei, Clariidae). SpringerPlus 3, 677.CrossRefGoogle Scholar
Omitogun, O.G., Ilori, O., Olaniyan, O., Amupitan, P., Oresanya, T., Aladele, S. & Odofin, W. (2012). Cryopreservation of the sperm of the African catfish for the thriving aquaculture industry in Nigeria. In Current Frontiers in Cryopreservation (ed. Katkov, I.), pp. 305330. Croatia: InTech Open Access Publisher.Google Scholar
Portella, M.C. (2004). Técnicas de criação intensiva de larvas de peixes neotropicais: situação atual e perspectivas. [Techniques for intensive rearing of neotropical fish larvae: current situation and perspectives.] Aquaciência Vitória: ES. 460 pp.Google Scholar
Puvaneswari, S., Marimuthu, K., Karuppasamy, R. & Haniffa, A.M. (2009). Early embryonic and larval development of Indian catfish, Heteropneustes fossilis . EurAsian J. BioSci. 3, 8496.Google Scholar
Radael, M.C. (2009). Descrição ontogênica de embriões de acará bandeira (Pterophyllum scalare LICHTENSTEIN, 1823) incubados à 28ºC, 45 pp. Monografia (Especialização) Curso de Morfofisiologia Animal, [Ontogenetic description of angelfish embryos (Pterophyllum scalare Lichtenstein, 1823) incubated at 28ºC, 45 pp. Monograph (Specialization) of Morphophysiology Animal,] UFLA, Lavras.Google Scholar
Radael, M.C., Cardoso, L.D., Andrade, D.R., Mattos, D.C., Motta, J.H.S., Manhães, J.V. & Vidal, M.V. Jr (2013). Morphophysiological characterization of the embryonic development of Melanotaenia praecox (Weber & de Beaufort, 1922). Zygote 9, 17.Google Scholar
Reynalte-Tataje, D.R., Zaniboni-Filho, & Esquivel, J. R. (2004). Embryonic and larvae development of piracanjuba, Brycon orbignyanus (Valenciennes, 1849, Pisces, Characidae). Maringá 26, 6771.Google Scholar
Santin, M., Bialetzki, A. & Nakatani, K. (2004). Mudanças ontogênicas no trato digestório e dieta de Apareiodon affinis (Steindachner, 1879). [Ontogenic changes in the digestive tract and Apareiodon affinis diet (Steindachner, 1879).] Acta Sci. Biol. Sci. 26, 291–8.Google Scholar
Senhorine, J.A. (1993). Procedimento para criação de larvas de peixes. [Procedure for fish larvae.] IBAMA CEPTA. Pirassununga: São Paulo. Apostila 21 pp.Google Scholar
Sfakianakis, D.G., Leris, I. & Kentouri, M. (2011). Effect of developmental temperature on swimming performance of zebrafish (Danio rerio) juveniles. Environ. Biol. Fish. 90, 421–7.Google Scholar
Tsai, H.Y., Chang, M., Liu, S.C., Abe, G. & Ota, K.G. (2013). Embryonic development of goldfish (Carassius auratus): a model for the study of evolutionary change in developmental mechanisms by artificial selection. Dev. Dyn. 242, 1262–83.Google Scholar
Tonini, W. C. T., Polese, M. F., Abreu, M. L. CC., Mattos, D. C., Vidal Junior, M. V. & Andrade, D. R. (2012). Digestibilidade aparente de alimentos proteicos e energéticos para Trichogaster leeri . [Apparent digestibility of protein and energy sources for Trichogaster leeri.] Revista Brasileira de Saúde e Produção Animal 13, 569–77.CrossRefGoogle Scholar
Woynarovich, E. & Horváth, L. (1983). A Propagação Artificial de Peixes de águas tropicais: Manual de Extensão. [The spread tropical water fish Artificial: Extension Manual.] Brasília: FAO/CODEVASF/CNPq, 13 pp.Google Scholar