Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T02:52:24.222Z Has data issue: false hasContentIssue false

Effect of serum on the mitochondrial active area on developmental days 1 to 4 in in vitro-produced bovine embryos

Published online by Cambridge University Press:  17 March 2011

M. Crocco*
Affiliation:
Instituto Nacional de Parasitología ‘M.F. Chaben’ ANLIS MALBRÁN, Av. Paseo Colón 568, Ciudad de Buenos Aires, Argentina. Tel/Fax: +54 114331 4016/7142. e-mail: [email protected] Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Instituto Nacional de Tecnología Agropecuaria EEA Balcarce, CC276 7620 Balcarce, Argentina.
R.H. Alberio
Affiliation:
Instituto Nacional de Tecnología Agropecuaria EEA Balcarce, CC276 7620 Balcarce, Argentina.
L. Lauria
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
M.I. Mariano
Affiliation:
Instituto Nacional de Parasitología ‘M.F. Chaben’ ANLIS Malbrán, Av. Paseo Colón 568 Bs. As., Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
*
All correspondence to: Melisa Crocco. Instituto Nacional de Parasitología ‘M.F. Chaben’ ANLIS MALBRÁN, Av. Paseo Colón 568, Ciudad de Buenos Aires, Argentina. Tel/Fax: +54 114331 4016/7142. e-mail: [email protected]

Summary

Certain morphological changes at the subcellular level caused by the current techniques for in vitro embryo production seem to affect mitochondria. Many of these, including dysfunctional changes, have been associated with the presence of serum in the culture medium. Thus, the aim of the present work was to assess the mitochondrial dynamics occurring in embryos during the first 4 days of development, in order to analyze the most appropriate time for adding the serum. We used transmission electron microscopy (TEM) micrographs to calculate the embryo area occupied by the different morphological types of mitochondria, and analyzed them with Image Pro Plus analyzer. The results showed hooded mitochondria as the most representative type in 1- to 4-day-old embryos. Swollen, on-fusion, orthodox and vacuolated types were also present. When analyzed in embryos cultured without serum, the dynamics of the different mitochondrial types appeared to be similar, a fact that may provide evidence that the developmental changes control the mitochondrial dynamics, and that swollen mitochondria may not be completely inactive. In contrast, in culture medium supplemented with serum from estrous cows, we observed an increased area of hooded mitochondria by developmental day 4, a fact that may indicate an increased production of energy compared with previous days. According to these results, the bovine serum added to the culture medium seems not to be responsible for the functional changes in mitochondria.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H., Yamahita, S., Itoh, T., Satoh, T. & Hoshi, H. (1999). Ultrastructure of bovine embryos developed from in vitro-matured and -fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum-free medium or in serum-supplemented medium. Mol. Reprod. Dev. 53, 325–35.Google Scholar
Albihn, A., Rodriguez-Martinez, H. & Gustafsson, H. (1990). Morphology of day 7 bovine demi-embryos during in vitro reorganization. Acta Anat. (Basel) 138, 42–9.CrossRefGoogle ScholarPubMed
Barnett, D.K. & Bavister, B.D. (1996). Inhibitory effect of glucose and phosphate on the second cleavage division of hamster embryos: is it linked to metabolism? Human Reprod. 11, 177–83.CrossRefGoogle ScholarPubMed
Barni, S., Sciola, L., Spano, A. & Pippia, P. (1996). Static cytofluorometry and fluorescence morphology of mitochondria and DNA in proliferating fibroblasts. Biotech. Histochem. 71, 6670.Google Scholar
Bavister, B.D. (1995). Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91148.Google Scholar
Betteridge, K.J. & Fléchon, J.E. (1988). The anatomy and physiology of pre-attachment bovine embryos. Theriogenology 29, 155–87.Google Scholar
Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E. & Chan, D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189200.CrossRefGoogle ScholarPubMed
Chi, M.M-Y., Hoehn, A. & Moley, K.H. (2002). Metabolic changes in the glucose-induced apoptotic blastocyst suggest alterations in mitochondrial physiology. Am. J. Physiol. Endocrinol. Metab. 283, E22632.Google Scholar
Crosier, A.E., Farin, P.W., Dykstra, M.J., Alexander, J.E. & Farin, C.E. (2001). Ultrastructural morphometry of bovine blastocysts produced in vivo or in vitro. Biol. Reprod. 64, 1375–85.Google Scholar
Dorland, M., Gardner, D.K. & Trounson, A.O. (1994). Serum in synthetic oviduct fluid causes mitochondrial degeneration in ovine embryos. J. Reprod. Fertil. 13, 17.Google Scholar
Dumollard, R., Carroll, J., Duchen, M.R., Campbell, K. & Swann, K. (2009). Mitochondrial function and redox state in mammalian embryos. Sem. Cell Dev. Biol. 20, 346–53.CrossRefGoogle ScholarPubMed
Fair, T., Lonergan, P., Dinnyes, A., Cottell, D.C., Hyttel, P., Ward, F.A. & Boland, M.P. (2001). Ultrastructure of bovine blastocysts following cryopreservation: effect of method of blastocyst production. Mol. Reprod. Dev. 58, 186–95.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Ferreirinha, F., Quattrini, A., Pirozzi, M., Valsecchi, V., Dina, G., Broccoli, V., Auricchio, A., Piemonte, F., Tozzi, G., Gaeta, L., Casari, G., Ballabio, A. & Rugarli, E. (2004). Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J. Clin. Invest. 113, 231–43.CrossRefGoogle ScholarPubMed
Gardner, D.K. (1998). Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 49, 83102.CrossRefGoogle ScholarPubMed
Gomez, E. & Diez, C. (2000). Effects of glucose and protein sources on bovine embryo development in vitro. Anim. Reprod. Sci. 58, 2337.Google Scholar
Han, Z., Vassena, R., Chi, M.M.Y., Potireddy, S., Sutovsky, M., Moley, K.H., Sutovsky, P. & Latham, K.E. (2008). Role of glucose in cloned mouse embryo development. Am. J. Physiol. Endocrinol. Metab. 295, E798809.CrossRefGoogle ScholarPubMed
Karbowski, M., Spodnik, J.H., Teranishi, M., Wozniak, M., Nishizawa, Y., Usukura, J. & Wakabayashi, T. (2001). Opposite effects of microtubule-stabilizing and microtubule-destabilizing drugs on biogenesis of mitochondria in mammalian cells. J. Cell Sci. 114, 281–91.CrossRefGoogle ScholarPubMed
Krisher, R.L. & Bavister, B.D. (1998). Responses of oocytes and embryos to the culture environment. Theriogenology 49, 103–14.CrossRefGoogle Scholar
Lindner, G.M. & Wright, R.W. (1983). Bovine embryo morphology and evaluation. Theriogenology 20, 407–16.Google Scholar
Logan, D.C. (2003). Mitochondrial dynamics. New Phytologist 160, 463–78.Google Scholar
Logan, D.C. (2006). The mitochondrial compartment. J. Exp. Bot. 57, 1225–43.Google Scholar
Mannella, C.A. (2008). Structural diversity of mitochondria, functional implications. Ann. N.Y. Acad. Sci. 1147, 171–9.Google Scholar
Margineantu, D.H., Cox, W.G., Sundell, L., Sherwood, S.W., Beechem, J.M. & Capaldi, R.A. (2002). Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion 1, 425–35.Google Scholar
Maurer, H.R. (1992). Towards serum-free, chemical defined media for mammalian cell culture. In: Animal Cell Culture: A Practical Approach. 2nd edn (ed. Freshney, R.I.). Oxford: Oxford University Press. pp. 1546.Google Scholar
Mohr, L.R. & Trounson, A.O. (1981). Structural changes associated with freezing of bovine embryos. Biol. Reprod. 25, 1009–25.CrossRefGoogle ScholarPubMed
Mollenhauer, H.H. (1964). Plastic embedding mixtures for use in electron microscopy. Stain Technol. 39, 111.Google Scholar
Mucci, N., Aller, J., Kaiser, G.G., Hozbor, F., Cabodevila, J. & Alberio, R.H. (2006). Effect of estrous cow serum during bovine embryo culture on blastocyst development and cryotolerance after slow freezing or vitrification. Theriogenology 65, 1551–62.Google Scholar
Okamoto, K. & Shaw, J.M. (2005). Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Ann. Rev. Genet. 39, 503–36.Google Scholar
Palma, G.A. (2001). Producción in vitro de embriones bovinos. In: Biotecnología de la Reproducción. Argentina: Instituto Nacional de Tecnología Agropecuaria. (ed. Palma, G.) pp. 225–94.Google Scholar
Peng, T.I. & Jou, M.J. (2004). Mitochondrial swelling and generation of reactive oxygen species induced by photoirradiation are heterogeneously distributed. Ann. N.Y. Acad. Sci. 1011, 112–22.Google Scholar
Pikó, L. & Taylor, K.D. (1987). Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev. Biol. 123, 364–74.Google Scholar
Pinyopummintr, T. & Bavister, B.D. (1991. In vitro-matured/in vitro-fertilized bovine oocytes can develop into morulae/blastocysts in chemically defined protein-free cultured media. Biol. Reprod. 45, 736–42.Google Scholar
Ram, P.T. & Schultz, R.M. (1993). Reporter gene expression in G2 of the 1-cell mouse embryo. Dev. Biol. 156, 552–6.Google Scholar
Rexroad, C.E. Jr. (1989). Co-culture of domestic animal embryos. Theriogenology 31, 105–14.Google Scholar
Reynolds, E.W. (1963). The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–12.Google Scholar
Shamsuddin, M. & Rodriguez-Martinez, H. (1994). Fine structure of bovine blastocysts developed either in serum-free medium or in conventional co-culture with oviduct epithelial cells. J. Vet. Med. 41, 307–16.Google Scholar
Sheahan, M.B., McCurdy, D.W. & Rose, R.J. (2005). Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J. 44, 744–55.Google Scholar
Skulachev, V.P., Bakeeva, L.E., Chernyak, B.V., Domnina, L.V., Minin, A.A., Pletjushkina, O.Y., Saprunova, V.B., Skulachev, I.V., Tsyplenkova, V.G., Vasiliev, J.M., Yaguzhinsky, L.S. & Zorov, D.B. (2004). Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Mol. Cell. Biochem. 256/752 85143.Google Scholar
Smith, L.C., Bordignon, V., García, J.M. & Meirelles, F.V. (2000). Mitochondrial genotype segregation and effects during mammalian development: applications to biotechnology. Theriogenology 53, 3546.CrossRefGoogle ScholarPubMed
Taylor, K.D. & Pikó, L. (1995). Mitochondrial biogenesis in early mouse embryos: expression of the mRNAs for subunits IV, Vb, and VIIc of cytochrome c oxidase and subunit 9 (P1) of H+-ATP synthase. Mol. Reprod. Dev. 40, 2935.CrossRefGoogle ScholarPubMed
Trimarchi, J.R., Liu, L., Portereld, D.M., Smith, P.J. & Keefe, D.L. (2000). Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol. Reprod. 62, 1866–74.Google Scholar
Van Blerkom, J. (2004). Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128, 269–80.Google Scholar
Van Blerkom, J., Davis, P.W. & Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod. 10, 415–24.Google Scholar
Van Langendonckt, A., Donnay, N., Shuurbiers, P., Auquier, C., Carolan, C., Massip, A. & Dessy, F. (1997). Effects of supplementation with fetal calf serum on development of bovine embryos in synthetic oviduct fluid medium. J. Reprod. Fertil. 109, 8793.Google Scholar
Watson, A.J., De Sousa, P., Caveney, A., Barcroft, L.C., Natale, D., Urquhart, J. & Westhusin, M.E. (2000). Impact of bovine oocyte maturation media on oocyte transcript levels, blastocyst development, cell number, and apoptosis. Biol. Reprod. 62, 355–64.CrossRefGoogle ScholarPubMed