Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T07:02:58.918Z Has data issue: false hasContentIssue false

Effect of different culture systems on mRNA expression in developing rabbit embryos

Published online by Cambridge University Press:  15 August 2011

M.D. Saenz-de-Juano
Affiliation:
Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universidad Politécnica de Valencia, Valencia, Spain.
C. Naturil-Alfonso
Affiliation:
Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universidad Politécnica de Valencia, Valencia, Spain.
J.S. Vicente
Affiliation:
Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universidad Politécnica de Valencia, Valencia, Spain.
F. Marco-Jiménez*
Affiliation:
Laboratory of Biotechnology of Reproduction. Institute of Science and Animal Technology (ICTA) at the Polytechnic University of Valencia, C/Camino de Vera s/n, 46022 Valencia, Spain. Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universidad Politécnica de Valencia, Valencia, Spain.
*
All correspondence to: Francisco Marco-Jiménez. Laboratory of Biotechnology of Reproduction. Institute of Science and Animal Technology (ICTA) at the Polytechnic University of Valencia, C/Camino de Vera s/n, 46022 Valencia, Spain. Tel: +34 96 3879435. Fax: +34 96 3877439. E-mail: [email protected].

Summary

The rate of zygotes in vitro developed to hatched blastocyst stage was evaluated between two different commercial media (TCM-199 and Ham's F10) and two different culture systems (renewal and non-renewal single medium) to determine the effects of culture conditions on rabbit embryo preimplantation development. The relative transcript abundances of OCT4, vascular endothelial growth factor (VEGF) and epidermal growth factor receptor 3 (erbB3) of resultant blastocysts were also analysed and compared with in vivo developed blastocysts. Results showed an important divergence in mRNA expression between embryos developed under in vivo and in vitro conditions despite there being no significant difference in hatching blastocyst rates between different culture systems and different media. For OCT4, transcript abundance of in vitro culture embryos differs from their in vivo chronological counterparts, but, when the medium is renewed, mRNA expression seemed similar to in vivo developed 4-day-old embryos. In addition, VEGF and erbB3 expression showed marked variation between different in vitro conditions. Therefore, the study of specific transcript abundance in rabbit blastocyst provides a more detailed description of which alterations in gene expression occur due in vitro conditions, and further studies should be carried out to reduce current limitations of long-term culture of rabbit pre-implantation embryos.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C.E. (1960). Studies on prenatal mortality in the rabbit, Oryctolagus cuniculus: the amount and distribution of losses before and after implantation. Endocrinology 19, 325–44.CrossRefGoogle Scholar
Adams, C.E. (1970). The development of rabbit eggs after culture in vitro for 1–4 days. J. Embryol. Exp. Morphol. 23, 2134.Google ScholarPubMed
Artini, P.G., Valentino, V., Montleone, P., Simi, G., Parisen-Toldin, M.R., Cristello, F., Cela, V. & Genazzani, A.R. (2008). Vascular endothelial growth factor level changes during human embryo development in culture medium. Gynecol. Endocrinol. 24, 184–7.CrossRefGoogle ScholarPubMed
Balasubramanian, S., Son, W.J., Mohana Kumar, B., Ock, S.A., Yoo, J.G., Im, G.S., Choe, S.Y. & Rho, G.J. (2007). Expression pattern of oxygen and stress-responsive gene transcripts at various developmental stages of in vitro and in vivo preimplantation bovine embryos. Theriogenology 68, 265–75.CrossRefGoogle ScholarPubMed
Biggers, J.D. & Summers, M.C. (2008). Choosing a culture medium: making informed choices. Fertil. Steril. 90, 473–83.CrossRefGoogle ScholarPubMed
Biggers, J.D., McGinnis, L.K. & Lawitts, J.A. (2005). One-step versus two-step culture of mouse preimplantation embryos: is there a difference? Hum. Reprod. 20, 3376–84.CrossRefGoogle ScholarPubMed
Boiani, M. & Schöler, H.R. (2005). Regulatory networks in embryo-derived pluripotent stem cells. Nat. Rev. Mol. Cell Biol. 6, 872–81.CrossRefGoogle ScholarPubMed
Carney, E.W. & Foote, R.H. (1991). Improved development of rabbit one-cell embryos to the hatching blastocyst stage by culture in a defined, protein-free culture medium. J. Reprod. Fertil. 91, 113–23.CrossRefGoogle Scholar
Carson, D.D., Bagchi, I., Dey, S.K., Enders, A.C., Fazleabas, A.T., Lessy, B.A. & Yoshinaga, K. (2000). Embryo Implant. Dev. Biol. 223, 217–37.Google Scholar
Collins, M.K., Perkins, G.R., Rodriguez-Tarduchy, G., Nieto, M.A. & Lopez-Rivas, A. (1994). Growth factors as survival factors: regulation of apoptosis. Bioessays 16, 133–8.CrossRefGoogle ScholarPubMed
Corcorán, D., Fair, T., Park, S., Rizos, D., Patel, O.V., Smith, G.W., Coussens, P.M., Ireland, J.J., Boland, M.P., Evans, AC. & Lonergan, P. (2006). Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos. Reproduccion 131, 651–60.CrossRefGoogle ScholarPubMed
Escribá, M.J., Silvestre, M.A., Saeed, A.M. & García-Ximénez, F. (2001). Comparison of the effect of two different handling media on rabbit zygote developmental ability. Reprod. Nutr. Dev. 41, 181–6.CrossRefGoogle ScholarPubMed
Fleming, T.P., Kwong, W.Y., Porter, R., Ursell, E., Fesenko, I., Wilkins, A., Miller, D.J., Watkins, A.J. & Eckert, J.J. (2004). The embryo and its future. Biol. Reprod. 71, 1046–54.CrossRefGoogle ScholarPubMed
Fukuda, Y., Katarigi, Y., Morita, M. (2010). Investigation of imprinted gene expression for in vitro fertilized mouse embryos. J. Mamm. Ova Res 27, 51–7.CrossRefGoogle Scholar
Fukui, Y., Lee, E.S. & Araki, N. (1996). Effect of medium renewal during culture in two different culture systems on development to blastocysts from in vitro produced early bovine embryos. J. Anim. Sci. 74, 2752–8.CrossRefGoogle ScholarPubMed
Gandolfi, T.A. & Gandolfi, F. (2001). The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology 55, 1255–76.CrossRefGoogle Scholar
Gardner, D.K. (1994). Mammalian embryo culture in the absence of serum or somatic cell support. Cell Biol. Int. 18, 1163–79.CrossRefGoogle ScholarPubMed
Gardner, D.K. & Lane, M. (1998). Culture of viable human blastocysts in defined sequential serum-free media. Hum. Reprod. 13, 148–59.CrossRefGoogle ScholarPubMed
Gardner, D.K., Lane, M., Spitzer, A. & Batt, P.A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic-cells – amino acids, vitamins, and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390400.CrossRefGoogle Scholar
Gutiérrez-Adán, A., Rizos, D., Fair, T., Moreira, P.N., Pintado, B., de la Fuente, J., Boland, M.P. & Lonergan, P. (2004). Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol. Reprod. Dev. 68, 441–8.CrossRefGoogle ScholarPubMed
Hartshorn, C., Rice, J.E. & Wangh, L.J. (2004). Optimized real-time PCR for quantitative measurements of DNA and RNA in single embryos for their blastomeres. In: A–Z of Quantitative PCR, pp. 677702. ed. Bustin, S.A.. IUL Biotechnology Series: La Jolla, California.Google Scholar
Hegele-Hartung, C., Fischer, B. & Beier, H.M. (1988). Development of preimplantation rabbit embryos after in-vitro culture and embryo transfer: an electron microscopic study. Anat. Rec. 1, 3142.CrossRefGoogle Scholar
Hohn, H.P., Mootz, U. & Denker, H.W. (1992). Development of rabbit preimplantation blastocysts cultured with precultured endometrial tissue. J. Reprod. Fert. 95, 409–20.CrossRefGoogle ScholarPubMed
Hoque, M.O., Brait, M., Rosenbaum, E., Poeta, M.L., Pal, P., Begum, S., Dasgupta, S., Carvalho, A.L., Ahrendt, S.A., Westra, W.H. & Sidransky, D. (2010). Genetic and epigenetic analysis of erbB signaling pathway genes in lung cancer. J. Thorac. Oncol. 5, 1887–93.CrossRefGoogle ScholarPubMed
Jin, D.I., Kim, D.K., Im, K.S. & Choi, W.S. (2000). Successful pregnancy after transfer of rabbit blastocysts grown in vitro from single-cell zygotes. Theriogenology 54, 1109–16.CrossRefGoogle ScholarPubMed
Karja, N.W., Kikuchi, K., Fahrudin, M., Ozawa, M., Somfai, T., Ohnuma, K., Noguchi, J., Kaneko, H. & Nagai, T. (2006). Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions. Reprod. Biol. Endocrinol. 4, 54.CrossRefGoogle Scholar
Kim, J.Y., Hwang, J.H., Zhou, W., Shin, J., Noh, S.M., Song, I.S., Kim, J.Y., Lee, S.H. & Kim, J. (2009). The expression of VEGF receptor genes is concurrently influenced by epigenetic gene silencing of the genes and VEGF activation. Epigenetics 4, 313–21.CrossRefGoogle Scholar
Kobolak, J., Kiss, K., Polgar, Z., Mamo, S., Gaillard, CR., Tancos, Z., Bock, I., Baji, A.G., Tar, K., Pirity, M.K. & Dinnyes, A. (2009). Promoter analysis of the rabbit POU5F1 gene and its expression in preimplantation stage embryos. BMC Mol. Biol. 10, 88.CrossRefGoogle ScholarPubMed
Lane, M. & Gardner, D.K. (2007). Embryo culture medium: which is the best? Best Pract. Res. Clin. Obstet. Gynaecol. 21, 83100.CrossRefGoogle ScholarPubMed
Léandri, R.D., Archilla, C., Bui, L.C., Peynot, N., Liu, Z., Cabau, C., Chastellier, A., Renard, J.P. & Duranthon, V. (2009). Revealing the dynamics of gene expression during embryonic genome activation and first differentiation in the rabbit embryo with a dedicated array screening. Physiol. Genomics 36, 98113.CrossRefGoogle ScholarPubMed
Lee, K.Y. & DeMayo, F.J. (2004). Animal models of implantation. Reproduction 128, 679695.CrossRefGoogle ScholarPubMed
Li, J. & Foote, R.H. (1993). Culture of rabbit zygotes into blastocysts in protein-free medium with 1% to 20% oxygen. J. Reprod. Fertil. 98, 163–7.CrossRefGoogle ScholarPubMed
Li, J., Foote, R.H. & Simkin, M. (1993). Development of rabbit zygotes cultured in protein-free medium with catalase, taurine, or superoxide dismutase. Biol. Reprod. 49, 33–7.CrossRefGoogle ScholarPubMed
Li, X., Kato, Y. & Tsunoda, Y. (2005). Comparative analysis of development-related gene expression in mouse preimplantation embryos with different developmental potential. Mol. Reprod. Dev. 72, 152–60.CrossRefGoogle ScholarPubMed
Lonergan, P., Rizos, D., Kanka, J., Nemcova, L., Mbaye, A.M., Kingston, M., Wade, M., Duffy, P. & Boland, M.P. (2003). Temporal sensitivity of bovine embryos to culture environment after fertilization and the implications for blastocyst quality. Reproduction 126, 337–46.CrossRefGoogle ScholarPubMed
Mamo, S., Gal, A.B., Polgar, Z. & Dinnyes, A. (2008). Expression profiles of the pluripotency marker gene POU5f1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos. BMC Mol. Biol. 9, 67.CrossRefGoogle ScholarPubMed
Market-Velker, B.A., Fernandes, A.D. & Mann, M.R.W. (2010). Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol. Reprod. doi:10.1095/biolreprod.110.085480CrossRefGoogle Scholar
Medvedev, S.P., Shevchenko, A.I., Mazurok, N.A. & Zakian, S.M. (2008). OCT4 and NANOG are the key genes in the system of pluripotency maintenance in mammalian cells. Russ. J. Genet. 44, 1377–93.CrossRefGoogle ScholarPubMed
Niemann, H. & Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53, 2134.CrossRefGoogle ScholarPubMed
Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45.CrossRefGoogle ScholarPubMed
Purpera, M.N., Giraldo, A.M., Ballard, C.B., Hylan, D., Godke, R.A. & Bondioli, K.R. (2009). Effects of culture medium and protein supplementation on mRNA Expression of in vitro produced bovine embryos. Mol. Reprod. Dev. 76, 783–93.CrossRefGoogle ScholarPubMed
Rizos, D., Lonergan, P., Boland, M.P., Arroyo-Garcia, R., Pintado, B., de la Fuente, J. & Gutierrez-Adan, A. (2002a). Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol. Reprod. 66, 589–95.CrossRefGoogle ScholarPubMed
Rizos, D., Ward, F., Duffy, P., Boland, MP. & Lonergan, P. (2002b). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–48.CrossRefGoogle ScholarPubMed
Rizos, D., Clemente, M., Bermejo-Alvarez, P., de la Fuente, J., Lonergan, P. & Guitiérrez-Adán, A. (2008). Consequences of in vitro culture conditions on embryo development and quality. Reprod. Dom. Anim. 43, 4450.CrossRefGoogle ScholarPubMed
Saadeldin, I.M., Kim, B., Lee, B. & Jang, G. (2011). Effect of different culture media on the temporal gene expression in the bovine developing embryos. Theriogenology doi: 10.1016/j.theriogenology.2010.11.006CrossRefGoogle Scholar
Saenz-de-Juano, M.D., Peñaranda, D.S., Marco-Jiménez, F., Llobat, L. & Vicente, J. (2011). Differential mRNA expression in rabbit in vivo pre-implantatory embryos. Reprod. Dom. Anim. doi: 10.1111/j.1439–0531.2010.01702.x.CrossRefGoogle Scholar
Seidel, G.E. Jr, Bowen, R.A. & Kane, M.T. (1976). In vitro fertilization, culture and transfer of rabbit ova. Fertil. Steril. 27, 861–70.CrossRefGoogle ScholarPubMed
Sultana, F., Hatori, M., Shimozawa, N., Ebisawa, T. & Sankai, T. (2009). Continuous observation of rabbit preimplantation embryos in vitro by using a culture device connected to a microscope. J. Am. Ass. Lab. Anim. Sci. 48, 52–6.Google ScholarPubMed
Telford, N.A., Watson, A.J. & Schultz, G.A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90100.CrossRefGoogle ScholarPubMed
Torry, D.S., Leavenworth, J., Chang, M., Maheshwari, V., Groesch, K., Ball, E.R. & Torry, R.J. (2007). Angiogenesis in implantation. J. Ass. Reprod. Genet. 24, 303–15.CrossRefGoogle ScholarPubMed
Trounson, A., Pushett, D., Maclellan, L., Lewis, I. & Gardner, D. (1994). Current status of IVM/IVF and embryo culture in humans and farm animals. Theriogenology 41, 5766.CrossRefGoogle Scholar
Vatja, G., Rienzi, L., Cobo, Q. & Yovich, J. (2010). Embryo culture: can we perform better tan nature? Reprod. Biomed. Online 20, 453–69.Google Scholar
Wrenzycki, C., Herrmann, D. & Niemann, H. (2007). Messenger RNA in oocyte and embryos in relation. Theriogenology 68, 7783.CrossRefGoogle ScholarPubMed
Yang, X.Z. & Foote, R.H. (1987). Production of identical twin rabbits by micromanipulation of embryos. Biol. Reprod. 37, 1007–14.CrossRefGoogle ScholarPubMed