Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T23:09:05.309Z Has data issue: false hasContentIssue false

Crosstalk between protein kinases A and C regulates sea urchin sperm motility

Published online by Cambridge University Press:  02 December 2021

Arlet Loza-Huerta
Affiliation:
Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, México62210
Hiram Pacheco-Castillo
Affiliation:
Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, México62210
Alberto Darszon
Affiliation:
Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, México62210
Carmen Beltrán*
Affiliation:
Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, México62210
*
Author for correspondence: Carmen Beltrán. Instituto de Biotecnología-Universidad Nacional Autónoma de México. Av. Universidad # 2001. Cuernavaca, Morelos, CP.62210, México. E-mail: [email protected]

Summary

Fertilization, a crucial event for species preservation, in sea urchins, as in many other organisms, requires sperm motility regulation. In Strongylocentrotus purpuratus sea urchins, speract, a sperm chemoattractant component released to seawater from the outer egg layer, attracts sperm after binding to its receptor in the sperm flagellum. Previous experiments performed in demembranated sperm indicated that motility regulation in these cells involved protein phosphorylation mainly due to the cAMP-dependent protein kinase (PKA). However, little information is known about the involvement of protein kinase C (PKC) in this process. In this work, using intact S. purpuratus sea urchin sperm, we show that: (i) the levels of both phosphorylated PKA (PKA substrates) and PKC (PKC substrates) substrates change between immotile, motile and speract-stimulated sperm, and (ii) the non-competitive PKA (H89) and PKC (chelerythrine) inhibitors diminish the circular velocity of sperm and alter the phosphorylation levels of PKA substrates and PKC substrates, while the competitive inhibitors Rp-cAMP and bisindolylmaleimide (BIM) do not. Altogether, our results show that both PKA and PKC participate in sperm motility regulation through a crosstalk in the signalling pathway. These results contribute to a better understanding of the mechanisms that govern motility in sea urchin sperm.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, CAI, Osycka-Salut, CE, Castellano, L, Cesari, A, Siervi Di, N, Mutto, A, Johannisson, A, Morrell, JM, Davio, C and Perez-Martinez, S (2017). Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines. Mol Hum Reprod 23, 521–34.CrossRefGoogle ScholarPubMed
Beltrán, C, Vacquier, VD, Moy, G, Chen, Y, Buck, J, Levin, LR and Darszon, A (2007). Particulate and soluble adenylyl cyclases participate in the sperm acrosome reaction. Biochem Biophys Res Commun 358, 1128–35.CrossRefGoogle ScholarPubMed
Beltrán, C, Treviño, CL, Mata-Martínez, E, Chávez, JC, Sánchez-Cárdenas, C, Baker, M and Darszon, A (2016). Role of ion channels in the sperm acrosome reaction. Adv Anat Embryol Cell Biol 220, 3569.CrossRefGoogle ScholarPubMed
Beltrán Núñez, C (2019) 3',5'-Cyclic adenosine monophosphate in the physiology of sea urchin spermatozoa. In: Spermatozoa: A View from Mexico (eds, Arenas Rios, E. and Fuentes Mascorro, G.). Autonomous University of Oaxaca Benito Juárez, México.Google Scholar
Bracho, GE, Fritch, JJ and Tash, JS (1997). A method for preparation, storage, and activation of large populations of immotile sea urchin sperm. Biochem Biophys Res Commun 237, 5962.CrossRefGoogle ScholarPubMed
Bracho, GE, Fritch, JJ and Tash, JS (1998). Identification of flagellar proteins that initiate the activation of sperm motility in vivo . Biochem Biophys Res Commun 242, 231–7.CrossRefGoogle ScholarPubMed
Bradham, CA, Foltz, KR, Beane, WS, Arnone, MI, Rizzo, F, Coffman, JA, Mushegian, A, Goel, M, Morales, J, Geneviere, AM, Lapraz, F, Robertson, AJ, Kelkar, H, Loza-Coll, M, Townley, IK, Raisch, M, Roux, MM, Lepage, T, Gache, C, McClay, DR and Manning, G (2006). The sea urchin kinome: A first look. Dev Biol 300, 180–93.CrossRefGoogle ScholarPubMed
Brokaw, CJ (1987). Regulation of sperm flagellar motility by calcium and cAMP-dependent phosphorylation. J Cell Biochem 35, 175–84.CrossRefGoogle ScholarPubMed
Chijiwa, T, Mishima, A, Hagiwara, M, Sano, M, Hayashi, K, Inoue, T, Naito, K, Toshioka, T and Hidaka, H (1990). Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem 265, 5267–72.CrossRefGoogle Scholar
Christen, R, Schackmann, RWW and Shapiro, BMM (1982). Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus . J Biol Chem 257, 14881–90.CrossRefGoogle ScholarPubMed
Christen, R, Schackmann, RW and Shapiro, BM (1983). Metabolism of sea urchin sperm. Interrelationships between intracellular pH, ATPase activity, and mitochondrial respiration. J Biol Chem 258, 5392–9.CrossRefGoogle ScholarPubMed
Chung, JJ, Shim, SH, Everley, RA, Gygi, SP, Zhuang, X and Clapham, DE (2014). Structurally distinct Ca2+ signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell 157, 808–22.CrossRefGoogle Scholar
Cohen, G, Rubinstein, S, Gur, Y and Breitbart, H (2004). Crosstalk between protein kinase A and C regulates phospholipase D and F-actin formation during sperm capacitation. Dev Biol 267, 230–41.CrossRefGoogle Scholar
Darszon, A, Guerrero, A, Galindo, BE, Nishigaki, T and Wood, CD (2008). Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility. Int J Dev Biol 52(5–6), 595606.CrossRefGoogle ScholarPubMed
Dey, CS and Brokaw, CJ (1991). Activation of Ciona sperm motility: phosphorylation of dynein polypeptides and effects of a tyrosine kinase inhibitor. J Cell Sci 100, 815–24.CrossRefGoogle ScholarPubMed
Doherty, CM, Tarchala, SM, Radwanska, E and Jonge de, CJ (1995). Characterization of two second messenger pathways and their interactions in eliciting the human sperm acrosome reaction. J Androl 16, 3646.Google ScholarPubMed
Espinal-Enríquez, J, Priego-Espinosa, DA, Darszon, A, Beltrán, C and Martínez-Mekler, G (2017). Network model predicts that CatSper is the main Ca2+ channel in the regulation of sea urchin sperm motility. Sci Rep 7, 4236.CrossRefGoogle ScholarPubMed
García-Rincón, J, Darszon, A and Beltrán, C (2016). Speract, a sea urchin egg peptide that regulates sperm motility, also stimulates sperm mitochondrial metabolism. Biochim Biophys Acta 1857, 415–26.CrossRefGoogle ScholarPubMed
Gingras, D, White, D, Garin, J, Multigner, L, Job, D, Cosson, J, Huitorel, P, Zingg, H, Dumas, F and Gagnon, C (1996). Purification, cloning, and sequence analysis of a Mr = 30,000 protein from sea urchin axonemes that is important for sperm motility. Relationship of the protein to a dynein light chain. J Biol Chem 271, 12807–13.CrossRefGoogle ScholarPubMed
Guerrero, A, Gadêlha, H, Ramírez-Gómez, HV, Ramírez, R, Beltrán, C and Tuval, I (2020). Chapter 12. Motility and guidance of sea urchin sperm. In Reproduction in Aquatic Animals, pp. 249276. Springer, Singapore.CrossRefGoogle Scholar
Hanoune, J and Defer, N (2001). Regulation and role of adenylyl cyclase isoforms. Ann Rev Pharmacol Toxicol 41, 145–74.CrossRefGoogle ScholarPubMed
Hansbrough, JR and Garbers, DL (1980). Purification and characteristics of a peptide (speract) associated with eggs that stimulates spermatozoa. Adv Enzyme Reg 19, 351–76.CrossRefGoogle ScholarPubMed
Hayashi, H, Yamamoto, K, Yonekawa, H and Morisawa, M (1987). Involvement of tyrosine protein kinase in the initiation of flagellar movement in rainbow trout spermatozoa. J Biol Chem 262, 16692–8.CrossRefGoogle ScholarPubMed
Herbert, JMM, Augereau, JMM, Gleye, J and Maffrand, JPP (1990). Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 172, 993–9.CrossRefGoogle ScholarPubMed
Hwang, JY, Mannowetz, N, Yongdeng Zhang, Y, Robert, A, Everley, RA, Steven, P, Gygi, SP, Bewersdorf, J, Lishko, PV and Jean-Ju Chung, JJ (2019) Dual Sensing of physiologic pH and calcium by EFCAB9 regulates sperm motility. Cell 177, 115.CrossRefGoogle ScholarPubMed
Inaba, K (2003). Molecular architecture of the sperm flagella: Molecules for motility and signaling. Zoo Sci 20, 1043–56.CrossRefGoogle ScholarPubMed
Johnson, CH, Clapper, DL, Winkler, MM, Lee, HC and Epel, D (1983). A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH. Dev Biol 98, 493501.CrossRefGoogle ScholarPubMed
Kaupp, UB, Kashikar, ND and Weyand, I (2008). Mechanisms of sperm chemotaxis. Ann Rev Physiol 70, 93117.CrossRefGoogle ScholarPubMed
Körschen, HG, Hamzeh, h, Pascal, r, Alvarez, L, Bönigk, w, Kaur, N, Levin, LR, Buck, J, Kambach, C, Michino, M, Jennings, A, Sato, A, Seifert, R, Strünker, T, Steegborn, C and Kaupp, UB (2021) External fertilization is orchestrated by a pH-regulated soluble adenylyl cyclase controlling sperm motility and chemotaxis. bioRxiv Preprint.CrossRefGoogle Scholar
Laemmli, UKK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.CrossRefGoogle ScholarPubMed
Lee, HC (1984). Sodium and proton transport in flagella isolated from sea urchin spermatozoa. J Biol Chem 259, 4957–63.CrossRefGoogle ScholarPubMed
Lee, HC, Johnson, C and Epel, D (1983). Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev Biol 95, 3145.CrossRefGoogle ScholarPubMed
Loyo-Celis, V, Orta, G, Beltrán, C and Darszon, A (2021). CatSper channels in sea urchin sperm. Cell Calcium 99, 102466.CrossRefGoogle ScholarPubMed
Loza-Huerta, A, Vera-Estrella, R, Darszon, A and Beltrán, C (2013). Certain Strongylocentrotus purpuratus sperm mitochondrial proteins co-purify with low density detergent-insoluble membranes and are PKA or PKC-substrates possibly involved in sperm motility regulation. Biochim Biophys Acta 1830, 5305–15.CrossRefGoogle ScholarPubMed
Manning, BD and Toker, A (2017). AKT/PKB signaling: navigating the network. Cell 169, 381405.CrossRefGoogle ScholarPubMed
Marín-Briggiler, CI, Jha, KN, Chertihin, O, Buffone, MG, Herr, JC, Vazquez-Levin, MH and Visconti, PE (2005). Evidence of the presence of calcium/calmodulin-dependent protein kinase IV in human sperm and its involvement in motility regulation. J Cell Sci 118, 2013–22.CrossRefGoogle ScholarPubMed
Melick, CH and Jewell, JL (2020). Small molecule H89 renders the phosphorylation of S6K1 and AKT resistant to mTOR inhibitors. Biochem J 477, 1847–63.CrossRefGoogle ScholarPubMed
Morita, M, Takemura, A and Okuno, M (2004). Acclimation of sperm motility apparatus in seawater-acclimated euryhaline tilapia Oreochromis mossambicus . J Exp Biol 207, 337–45.CrossRefGoogle ScholarPubMed
Murofushi, H, Ishiguro, K, Takahashi, D, Ikeda, J and Sakai, H (1986). Regulation of sperm flagellar movement by protein phosphorylation and dephosphorylation. Cell Motil Cytoskeleton 6, 83–8.CrossRefGoogle ScholarPubMed
Nakajima, A, Morita, M, Takemura, A, Kamimura, S and Okuno, M (2005). Increase in intracellular pH induces phosphorylation of axonemal proteins for activation of flagellar motility in starfish sperm. J Exp Biol 208, 4411–8.CrossRefGoogle ScholarPubMed
Newton, AC (1995). Protein kinase C: structure, function, and regulation. J Biol Chem 270, 28495–8.CrossRefGoogle ScholarPubMed
Newton, AC (2018). Protein kinase C: perfectly balanced. Crit Rev Biochem Mol Biol 53, 208–30.CrossRefGoogle ScholarPubMed
Nomura, M and Vacquier, VD (2006). Proteins associated with soluble adenylyl cyclase in sea urchin sperm flagella. Cell Motil. Cytoskeleton 63, 582–90.CrossRefGoogle ScholarPubMed
Nomura, M, Beltrán, C, Darszon, A and Vacquier, VD (2005). A soluble adenylylcyclase from sea urchin spermatozoa. Gene 353, 231–8.CrossRefGoogle ScholarPubMed
Su, YH and Vacquier, VD (2002). A flagellar K+-dependent Na+/Ca2+ exchanger keeps Ca2+ low in sea urchin spermatozoa. Proc Natl Acad Sci USA 99, 6743–8.CrossRefGoogle Scholar
Su, YH and Vacquier, VD (2006). Cyclic GMP-specific phosphodiesterase-5 regulates motility of sea urchin spermatozoa. Mol Biol Cell 17, 114–21.CrossRefGoogle ScholarPubMed
Su, YH, Chen, SH, Zhou, H and Vacquier, VD (2005). Tandem mass spectrometry identifies proteins phosphorylated by cyclic AMP-dependent protein kinase when sea urchin sperm undergo the acrosome reaction. Dev Biol 285, 116–25.CrossRefGoogle ScholarPubMed
Suzuki, N (1995). Structure, function and biosynthesis of sperm-activating peptides and fucose sulfate glycoconjugate in the extracellular coat of sea urchin eggs. Zoo Sci 12, 1327.CrossRefGoogle ScholarPubMed
Suzuki, N, Nomura, K, Ohtake, H and Isaka, S (1981). Purification and the primary structure of sperm-activity peptides from the jelly coat of sea urchin eggs. Biochem Biophys Res Commun 99, 1238–44.CrossRefGoogle ScholarPubMed
Tash, JS (1989). Protein phosphorylation: The second messenger signal transducer of flagellar motility. Cell Motil Cytoskeleton, 14, 332–9.CrossRefGoogle ScholarPubMed
Tash, JS and Means, AR (1983). Cyclic adenosine 3′,5′-monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod 28, 75104.CrossRefGoogle ScholarPubMed
Tash, JS, Hidaka, H and Means, AR (1986) Axokinin phosphorylation by cAMP-dependent protein kinase is sufficient for activation of sperm flagellar motility. J Cell Biol 103, 649–55.CrossRefGoogle ScholarPubMed
Tash, JS, Krinks, M, Patel, J, Means, RL, Klee, CB and Means, AR (1988). Identification, characterization, and functional correlation of calmodulin-dependent protein phosphatase in sperm. J Cell Biol 106, 1625–33.CrossRefGoogle ScholarPubMed
Toullec, D, Pianetti, P, Coste, H, Bellevergue, P, Grand-Perret, T, Ajakane, M, Baudet, V, Boissin, P, Boursier, E and Loriolle, F (1991). The bisindolylmaleimide GF 109203x is a potent and selective inhibitor of protein kinase C. J Biol Chem 266, 15771–81.CrossRefGoogle ScholarPubMed
Trötschel, C, Hamzeh, H, Alvarez, L, Pascal, R, Lavryk, F, Bönigk, W, Körschen, HG, Müller, A, Poetsch, A, Rennhack, A, Gui, L, Nicastro, D, Strünker, T, Seifert, R and Kaupp, UB (2020). Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation. EMBO J 39, e102723.CrossRefGoogle ScholarPubMed
Vacquier, VD, Loza-Huerta, A, García-Rincón, J, Darszon, A and Beltrán, C (2014), Soluble adenylyl cyclase of sea urchin spermatozoa. Biochim Biophy Acta 12, 2621–8.sCrossRefGoogle Scholar
Ward, GE, Moy, GW and Vacquier, VD (1986). Phosphorylation of membrane-bound guanylate cyclase of sea urchin spermatozoa. J Cell Biol 103, 95101.CrossRefGoogle ScholarPubMed
White, D, de Lamirande, E and Gagnon, C (2007). Protein kinase C is an important signaling mediator associated with motility of intact sea urchin spermatozoa. J Exp Biol 210, 4053–64.CrossRefGoogle ScholarPubMed
Wood, CD, Nishigaki, T, Furuta, T, Baba, SA and Darszon, A (2005). Real-time analysis of the role of Ca2+ in flagellar movement and motility in single sea urchin sperm. J Cell Biol 169, 725–31.CrossRefGoogle Scholar
Yokozaki, H, Tortora, G, Pepe, S, Maronde, E, Genieser, HG, Jastorff, B and Cho-Chung, YS (1992). Unhydrolyzable analogues of adenosine 3′:5′-monophosphate demonstrating growth inhibition and differentiation in human cancer cells. Cancer Res 52, 2504–8.Google ScholarPubMed
Supplementary material: File

Loza-Huerta et al. supplementary material

Table S1

Download Loza-Huerta et al. supplementary material(File)
File 21.8 KB