Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T15:14:06.909Z Has data issue: false hasContentIssue false

Amburana cearensis leaf extract maintains survival and promotes in vitro development of ovine secondary follicles

Published online by Cambridge University Press:  17 June 2015

R.S. Barberino
Affiliation:
Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, PE, Brazil.
V.R.P. Barros
Affiliation:
Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, PE, Brazil.
V.G. Menezes
Affiliation:
Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, PE, Brazil.
L.P. Santos
Affiliation:
Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, PE, Brazil.
V.R. Araújo
Affiliation:
Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceara, Fortaleza, CE, Brazil.
M.A.A. Queiroz
Affiliation:
Laboratory of Bromatology and Animal Nutrition, Federal University of San Francisco Valley, Petrolina, PE, Brazil.
J.R.G.S. Almeida
Affiliation:
Nucleus for Studies and Research on Medicinal Plants, Federal University of San Francisco Valley, Petrolina, PE, Brazil.
R.C. Palheta Jr
Affiliation:
Laboratory of Pharmacology, Federal University of San Francisco Valley, Petrolina, PE, Brazil.
M.H.T. Matos*
Affiliation:
Universidade Federal do Vale do São Francisco (UNIVASF). Campus de Ciências Agrárias. Colegiado de Medicina Veterinária. Laboratório de Biologia Celular, Citologia e Histologia. Rodovia BR 407, Km 12, Lote 543 – Projeto de Irrigação Nilo Coelho – S/N, C1. CEP: 56300–990, Petrolina, PE, Brasil. Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, PE, Brazil.
*
All correspondence to: M.H.T. Matos. Universidade Federal do Vale do São Francisco (UNIVASF). Campus de Ciências Agrárias. Colegiado de Medicina Veterinária. Laboratório de Biologia Celular, Citologia e Histologia. Rodovia BR 407, Km 12, Lote 543 – Projeto de Irrigação Nilo Coelho – S/N, C1. CEP: 56300–990, Petrolina, PE, Brasil. Tel: +55 87 2101 4839. E-mail: [email protected]

Summary

The antioxidant properties of Amburana cearensis extract may be a useful substitute for standard cell culture medium. Thus, the aim of this study was to evaluate the effect of this extract, with or without supplementation, on in vitro survival and development of sheep isolated secondary follicles. After collection of the ovaries, secondary follicles were isolated and cultured for 18 days in α-MEM+ supplemented with bovine serum albumin, insulin, transferrin, selenium, glutamine, hypoxanthine and ascorbic acid (control medium) or into medium composed of different concentrations of A. cearensis extract without supplements (Amb 0.1; 0.2 or 0.4 mg/ml) or A. cearensis extract supplemented with the same substances described above for α-MEM+ supplementation. The A. cearensis supplemented medium was named Amb 0.1+; 0.2+ or 0.4+ mg/ml. There were more morphologically normal follicles in Amb 0.1 or Amb 0.4 mg/ml than in the control medium (α-MEM+) after 18 days of culture. Moreover, the percentage of antrum formation was significantly higher in Amb 0.1 or Amb 0.2 mg/ml than in α-MEM+ and Amb 0.1+ mg/ml, and similar to the other treatments. All A. cearensis extract media induced a progressive and significant increase in follicular diameter throughout the culture period. In conclusion, this study showed that 0.1 mg/ml of this extract, without supplementation, maintains follicular survival and promotes the development of ovine isolated secondary follicles in vitro. This extract can be an alternative culture medium for preantral follicle development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abedelahi, A., Salehnia, M., Allameh, A.A. & Davoodi, D. (2010). Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Hum. Reprod. 25, 977–85.Google Scholar
Albuquerque, U. P., Medeiros, P.M., Almeida, A.L.S., Monteiro, J.M., Neto, E.M.F.L., Melo, J.G. & Santos, J.P. (2007). Medicinal plants of the Caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. J. Ethnopharmacol. 114, 325–54.Google Scholar
Andrade, E.R., Melo-Sterza, F.A., Seneda, M.M. & Alfieri, A.A. (2010). Consequências da produção das espécies reativas de oxigênio na reprodução e principais mecanismos antioxidantes. Rev. Bras. Reprod. Anim. 34, 7985.Google Scholar
Andrade, E.R., Van Den Hurk, R., Lisboa, L.A., Hertel, M.F., Melo-Sterza, F.A., Moreno, K., Bracarense, A.P.F.R.L., Landim-Alvarenga, F.C., Seneda, M.M. & Alfieri, A.A. (2012). Effects of ascorbic acid on in vitro culture of bovine preantral follicles. Zygote 20, 379–88.Google Scholar
Barboni, B., Russo, V., Cecconi, S., Curini, V., Colosimo, A., Garofalo, M.L., Capacchietti, G., Di Giacinto, O. & Mattioli, M. (2011). In vitro grown sheep preantral follicles yield oocytes with normal nuclear-epigenetic maturation. PLoS One 6, 27550.Google Scholar
Cartaxo, S.L., Souza, M.M.A. & Albuquerque, U.P. (2010). Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. J. Ethnopharmacol 131, 326–42.Google Scholar
Chaves, R.N., Martins, F.S., Saraiva, M.V.A., Celestino, J.J.H., Lopes, C.A.P., Correia, J.C., Lima Verde, I.B., Matos, M.H.T., Báo, S.N., Name, K.P.O., Campello, C.C., Silva, J.R.V. & Figueiredo, J.R. (2008). Chilling ovarian fragments during transportation improves viability and growth of goat preantral follicles cultured in vitro . Reprod. Fertil. Dev. 20, 640–7.Google Scholar
Chaves, R.N., Duarte, A.B.G., Rodrigues, G.Q., Celestino, J.J.H., Silva, G.M., Lopes, C.A.P., Almeida, A.P., Donato, M.A.M., Peixoto, C.A., Moura, A.A.A., Lobo, C.H., Locatelli, Y., Mermillod, P., Campelo, C.C. & Figueiredo, J.R. (2012) The effects of insulin and follicle-simulating hormone (FSH) during in vitro development of ovarian goat preantral follicles and the relative mRNA expression for insulin and FSH receptors and cytochrome P450 aromatase in cultured follicles. Bio. Reprod. 87, 69.Google Scholar
Crocomo, L.F., Marques Filho, F.C. & Landim-Alvarenga, F.C. (2012). Bicudo, S.D. Produção de embriões in vitro: estresse oxidativo e antioxidantes. Vet. e Zootec. 19, 470–9.Google Scholar
Erickson, G.F. & Shimasaki, S. (2001). The physiology of folliculogenesis: the role of novel growth factors. Fertil. Steril. 76, 943–9.Google Scholar
Esmaielzadeh, F., Hosseini, S.M., Hajian, M., Nasiri, Z., Chamani, M., Amin Afshar, M. & Nasr-Esfahani, M.H. (2013). Role of follicle stimulating hormone in the survival, activation and further growth of in vitro cultured sheep primordial follicles. Iran. J. Appl. Anim. Sci. 3, 785–90.Google Scholar
Gao, Z., Huang, K. & Xu, H. (2001). Protective effects os flavonoids in the roots of Scutellaria baicalensis Georgii against hydrogen peroxide-induced oxidative stress in HS-SYSY cells. Pharmacol. Res. 2, 173–8.Google Scholar
Gouveia, B.B., Barros, V.R.P., Gonçalves, R.J.S., Barberino, R.S., Menezes, V.G., Lins, T.L.B, Macedo, T.J.S., Santos, J.M.S., Rolim, L.A., Rolim Neto, P.J., Almeida, J.R.G.S. & Matos, M.H.T. (2015). Effect of ovarian tissue transportation in Amburana cearensis extract on the morphology and apoptosis of goat preantral follicles. Anim. Reprod. 12, 316–23.Google Scholar
Guan, S., Ge, D., Liu, T. Q., Ma, X. & Cui, Z.F. (2009). Protocatechuic acid promotes cell proliferation and reduces basal apoptosis in cultured neural stem cells. Toxicol. In Vitro 23, 201–8.Google Scholar
Guérin, P., El Mouatassim, S. & Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–89.Google Scholar
Gupta, P.S.P., Rameshb, H.S., Nandi, S. & Ravindra, J.P. (2007). Recovery of large preantral follicles from buffalo ovary: effect of season and corpus luteum. Anim Reprod Sci 101, 145–52.Google Scholar
Kim, Y.S., Seo, H.W., Lee, M.H., Kim, D.K., Jeon, H. & Cha, D.S. (2014). Protocatechuic acid extends lifespan and increases stress resistance in Caenorhabditis elegans . Arch. Pharm. Res. 37, 245–52.CrossRefGoogle ScholarPubMed
Leal, L.K.A.M., Nobre-Júnior, H.V., Cunha, G.M.A., Moraes, M.O., Pessoa, C., Oliveira, R.A., Silveira, E.R., Canuto, K.M. & Viana, G.S.B. (2005). Amburoside A, a glucoside from Amburana cearensis protects mesencephalic cells against 6-hydroxydopamine-induced neurotoxicity. Neurosci. Lett. 388, 8690.Google Scholar
Leal, L.K.A.M., Nobre, H.V. Júnior, Cunha, G.M.A., Moraes, M.O., Pessoa, C., Oliveira, R.A., Silveira, E.R., Canuto, K.M. & Viana, G.S.B. (2010). A comparative chemical and pharmacological study of standardized extracts and vanillic acid from wild and cultivated Amburana cearensis A.C. Smith. Phytomedicine 18, 230–3.Google Scholar
Li, Y. & Schellhorn, H.E. (2007). New developments and novel therapeutic perspectives for vitamin. C. J. Nutr. 137, 2171–84.Google Scholar
Lopez-Revuelta, A., Sanches-Gallego, J.I., Hernandez-Hernandez, A., Sanchez-Yague, J. & Llanillo, M. (2006). Membrane cholesterol contents influence the protective effects of quercetin and rutin in erythrocytes damaged by oxidative stress. Chemo-Biol. Interact. 61, 7991.Google Scholar
Luz, V.B, Araújo, V.R., Duarte, A.B.G., Silva, G.M., Chaves, R.N., Brito, I.R., Serafim, M.K.B., Campello, C.C., Feltrin, C., Bertolini, M., Almeida, A.P., Santos, R.R. & Figueiredo, J.R. (2013) Kit ligand and insulin-like growth factor I affect the in vitro development of ovine preantral follicles. Small Rumin. Res. 115, 99102.Google Scholar
Magalhães, D.M., Fernandes, D.D., Mororó, M.B., Silva, C.M., Rodrigues, G.Q., Bruno, J.B., Matos, M.H., Campello, C.C. & Figueiredo, J.R. (2011). Effect of the medium replacement interval on the viability, growth and in vitro maturation of isolated caprine and ovine pre-antral follicles. Reprod. Domest. Anim. 46, 134–40.Google Scholar
Martín-Aragón, S., Bened, J.M. & Villar, A.M. (1998). Effects of the antioxidant (6,7-dihydroxycoumarin) esculetin on the glutathone system and lipid peroxidation in mice. Gerontology 44, 21–5.Google Scholar
Murray, A.A., Molinek, M.D., Baker, S.J., Kojima, F.N., Smith, M.F., Hillier, S.G. & Spears, N. (2001). Role of ascorbic acid in promoting follicle integrity and survival in intact mouse ovarian follicles in vitro . Reproduction 121, 8996.Google Scholar
Neichi, T., Koshihara, Y. & Murota, S. (1983). Inhibitory effect of esculetin on 5-lipoxygenase and leukotriene biosynthesis. Biochim. Biophys. Acta 753, 130–2.Google Scholar
Peng, X., Yang, M., Wang, L., Tong, C. & Guo, Z. (2010). In vitro culture of sheep lamb ovarian cortical tissue in a sequential culture medium. J. Assist. Reprod. Genet. 27, 247–57.Google Scholar
Punithavathi, V.R., Prince, P.S.M., Kumar, R. & Selvakumari, S. (2011). Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur. J. Pharmacol. 650, 465–71.Google Scholar
Rajabi-Toustani, R., Motamedi-Mojdehi, R., Mehr, M. & Motamedi-Mojdehi, R. (2013). Effect of Papaver rhoeas L. extract on in vitro maturation of sheep oocytes. Small Rumin. Res. 114, 146–51.Google Scholar
Rodgers, R.J. & Irving-Rodgers, H.F. (2010). Formation of the ovarian follicular antrum and follicular fluid. Biol. Reprod. 82, 1021–9.Google Scholar
Rodrigues, G.Q., Silva, C.M.G., Faustino, L.R., Bruno, J.B., Magalhães, D.M., Campello, C.C. & Figueiredo, J.R. (2010). Bovine serum albumin improves in vitro development of caprine preantral follicles. Anim. Reprod. 7, 382–8.Google Scholar
Rossetto, R., Saraiva, M.V.A., Santos, R.R., Silva, C.M., Faustino, L.R., Chaves, R.N., Brito, I.R., Rodrigues, G.Q., Lima, I.M., Donato, M.A., Peixoto, C.A. & Figueiredo, J.R. (2012). Effect of medium composition on the in vitro culture of bovine pre-antral follicles: morphology and viability do not guarantee functionality. Zygote 21, 125–8.Google Scholar
Ruijters, E.J.B, Weseler, A.R., Kicken, C., Haenen, G.R.M.M. & Bast, A. (2013). The flavanol (–)-epicatechin and its metabolites protect against oxidative stress in primary endothelial cells via a direct antioxidant effect. Eur. J. Pharmacol. 715, 147–53.Google Scholar
Santos, J., Menezes, V.M., Barberino, R.S., Macedo, T.J.S., Lins, T.L.B., Gouveia, B.B., Barros, V.R.P., Santos, L.P., Gonçalves, R.J.S. & Matos, M.H.T. (2014). Immunohistochemical localization of fibroblast growth factor-2 in the sheep ovary and its effects on pre-antral follicle apoptosis and development in vitro . Reprod. Domest. Anim. 49, 222–8.Google Scholar
Saraiva, M.V.A., Rossetto, R., Brito, I.R., Celestino, J.J.H., Silva, C.M.G., Faustino, L.R., Almeida, A.P., Bruno, J.B., Magalhães, D.M., Matos, M.H.T., Campello, C.C. & Figueiredo, J.R. (2010). Dynamic medium produces caprine embryo from preantral follicles grown in vitro . Reprod. Sci. 17, 3543.Google Scholar
Singh, J., Rai, G.K., Upadhyay, A.K., Kumar, R. & Singh, K.P. (2004). Antioxidant phytochemicals in tomato (Lycopersicon esculentum). Ind. J. Agric. Sci. 74, 35.Google Scholar
Silva, J.R.V., van den Hurk, R., Costa, S.H.F., Andrade, E.R., Nunes, A.P.A., Ferreira, F.V.A., Lôbo, R.N.B. & Figueiredo, J.R. (2004). Survival and growth of goat primordial follicles after in vitro culture of ovarian cortical slices in media containing coconut water. Anim. Reprod. Sci. 81, 273–86.Google Scholar
Songsasen, N., Spindler, R. E. & Wildt, D. E. (2007). Requirement for, and patterns of, pyruvate and glutamine metabolism in the domestic dog oocyte in vitro . Mol. Reprod. Dev. 74, 870–7.Google Scholar
Tatsimo, S.J.N., Tamokou, J.D., Havyarimana, L., Csupor, D., Forgo, P., Hohmann, J., Kuiate, J.R. & Tane, P. (2012). Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum . BMC Res. Notes 5, 158–63.Google Scholar
Tilly, J.L. & Tilly, KI (1995). Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology 136, 242–52.Google Scholar
Wang, J. & Shahidi, F. (2013). Acidolysis of p-coumaric acid with omega-3 oils and antioxidant activity of phenolipid products in in vitro and biological model systems. J. Agric. Food Chem. 62, 454–61.Google Scholar
Zang, L.Y., Cosma, G., Gardner, H., Shi, X., Castranova, V. & Vallyathan, V. (2000) Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. Am. J. Physiol. Cell Physiol. 279, 954–60.Google Scholar