Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T18:42:29.415Z Has data issue: false hasContentIssue false

Research progress on the importance of incubation temperature for duck egg hatching and poultry production

Published online by Cambridge University Press:  14 October 2016

S. WEI
Affiliation:
College of life science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, P.R. China
X. ZENG*
Affiliation:
College of life science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, P.R. China
C. HAN*
Affiliation:
Institute of Animal Breeding & Genetic, Sichuan Agricultural University, Chengdu, Sichuan, 61130, P.R. China
H. LIU
Affiliation:
Institute of Animal Breeding & Genetic, Sichuan Agricultural University, Chengdu, Sichuan, 61130, P.R. China
L. LI
Affiliation:
Institute of Animal Breeding & Genetic, Sichuan Agricultural University, Chengdu, Sichuan, 61130, P.R. China
H. XU
Affiliation:
Institute of Animal Breeding & Genetic, Sichuan Agricultural University, Chengdu, Sichuan, 61130, P.R. China
*
Corresponding authors: [email protected] and [email protected]
Corresponding authors: [email protected] and [email protected]
Get access

Abstract

The ultimate goal of poultry hatching is to increase the hatching rate and to produce healthy hatched birds. In the incubation process, temperature is the most important factor for the egg hatching rate, the growth performance and offspring phenotype. This not only affects the early development of the offspring, but also has a continued influence on the physical characteristics of the birds, such as final body weight and meat quality. This article reviews the importance of incubation temperature on offspring phenotype, sex differentiation, organism immunity and the development of muscle fibre in poultry.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ARDIA, D.R., PEREZ, J.H. and CLOTFELTER, E.D. (2010) Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows. Proceedings. Biological Sciences 277: 1881-1888.Google ScholarPubMed
CHRISTENSEN, V.L. and BAGLEY, L.G. (1989) Efficacy of fertilization in artificially inseminated turkey hens. Poultry Science 68: 724-729.CrossRefGoogle ScholarPubMed
CONWAY, C.J. and MARTIN, T.E. (2000) Effects of ambient temperature on avian incubation behavior. Behavioral Ecology 11: 178-188.CrossRefGoogle Scholar
DURANT, S.E., CARTER, A.W., DENVER, R.J., HEPP, G.R. and HOPKINS, W.A. (2014) Are thyroid hormones mediators of incubation temperature-induced phenotypes in birds? Biology Letters 10: 20130950.CrossRefGoogle ScholarPubMed
DURANT, S.E., HOPKINS, W.A. and HEPP, G.R. (2011) Embryonic developmental patterns and energy expenditure are affected by incubation temperature in wood ducks (Aix sponsa). Physiological and Biochemical Zoology 84: 451-457.CrossRefGoogle ScholarPubMed
DURANT, S.E., HOPKINS, W.A., HAWLEY, D.M. and HEPP, G.R. (2012) Incubation temperature affects multiple measures of immunocompetence in young wood ducks (Aix Sponsa). Biology Letters 8: 108-111.CrossRefGoogle ScholarPubMed
DURANT, S.E., HOPKINS, W.A., HEPP, G.R. and WALTERS, J.R. (2013) Ecological, evolutionary, and conservation implications of incubation temperature-dependent phenotypes in birds. Biological Reviews of the Cambridge Philosophical Society 88: 499-509.CrossRefGoogle ScholarPubMed
HAMMOND, C.L., SIMBI, B.H. and STICKLAND, N.C. (2007) In ovo temperature manipulation influences embryonic motility and growth of limb tissues in the chick (Gallus gallus). Journal of Experimental Biology 210: 2667-2675.CrossRefGoogle ScholarPubMed
HEPP, G.R. and KENNAMER, R.A. (2012) Warm is better: incubation temperature influences apparent survival and recruitment of wood ducks (Aix sponsa). PLoS One 7: e47777.CrossRefGoogle ScholarPubMed
HEPP, G.R., KENNAMER, R.A. and JOHNSON, M.H. (2006) Maternal effects in Wood Ducks: incubation temperature influences incubation period and neonate phenotype. Functional Ecology 20: 308-314.CrossRefGoogle Scholar
HOPKINS, B.C., DURANT, S.E., HEPP, G.R. and HOPKINS, W.A. (2011) Incubation temperature influences locomotor performance in young wood ducks (Aix sponsa). Journal of Experimental Zoology Part A-Ecological Genetics and Physiology 315: 274-279.CrossRefGoogle ScholarPubMed
LIU, H., LIU, J., YAN, X., LI, Q., ZHAO, Y., WANG, Y., ZHANG, R., WANG, G., WANG, H., LI, X., YANG, C., LI, L., HAN, C. and WANG, J. (2015) Impact of thermal stress during incubation on gene expression in embryonic muscle of Peking ducks (Anasplatyrhynchos domestica). Journal of Thermal Biology 53: 80-89.CrossRefGoogle ScholarPubMed
LIU, X., LI, Z., HAN, C., ZHANG, Z. and XU, S. (2012) Effects of dietary manganese on Cu, Fe, Zn, Ca, Se, IL-1beta, and IL-2 changes of immune organs in cocks. Biological Trace Element Research 148: 336-344.CrossRefGoogle ScholarPubMed
MALTBY, V., SOMAIYA, A., FRENCH, N.A. and STICKLAND, N.C. (2004) In ovo temperature manipulation influences post-hatch muscle growth in the turkey. British Poultry Science 45: 491-498.CrossRefGoogle ScholarPubMed
OZNURLU, Y., SUR, E., OZAYDIN, T., CELIK, I. and ULUISIK, D. (2016) Histological and histochemical evaluations on the effects of high incubation temperature on the embryonic development of tibial growth plate in broiler chickens. Microscopy Research and Technique 79: 106-110.CrossRefGoogle ScholarPubMed
PIESTUN, Y., HALEVY, O. and YAHAV, S. (2009a) Thermal manipulations of broiler embryos--the effect on thermoregulation and development during embryogenesis. Poultry Science 88: 2677-2688.CrossRefGoogle ScholarPubMed
PIESTUN, Y., HAREL, M., BARAK, M., YAHAV, S. and HALEVY, O. (2009b) Thermal manipulations in late-term chick embryos have immediate and longer term effects on myoblast proliferation and skeletal muscle hypertrophy. Journal of Applied Physics 106: 233-240.Google ScholarPubMed
PIESTUN, Y., ZIMMERMAN, I. and YAHAV, S. (2015) Thermal manipulations of turkey embryos: The effect on thermoregulation and development during embryogenesis. Poultry Science 94: 273-280.CrossRefGoogle ScholarPubMed
SOREN, S.K., BHANJA, S.K., MANDAL, A.B., MEHRA, M., GOEL, A., SOREN, S.K., MANDAL, A.B. and MEHRA, M. (2012) Effect of incubational thermal manipulation on the embryonic and early post-hatch growth in layer chickens. Indian Journal of Poultry Science 47: 263-268.Google Scholar
VASUDEVA, R., DEEMING, D.C. and EADY, P.E. (2014) Developmental temperature affects the expression of ejaculatory traits and the outcome of sperm competition in Callosobruchus maculatus . Journal of Evolutionary Biology 27: 1811-1818.CrossRefGoogle ScholarPubMed
YILMAZ, A., TEPELI, C., GARIP, M. and CAGLAYAN, T. (2011) The effects of incubation temperature on the sex of Japanese quail chicks. Poultry Science 90: 2402-2406.CrossRefGoogle ScholarPubMed
ZHANG, R.P., LIU, H.H., LI, Q.Q., WANG, Y., LIU, J.Y., HU, J.W., YAN, X.P., GOU, H., LI, L. and WANG, J.W. (2014) Gene expression patterns, and protein metabolic and histological analyses for muscle development in Peking duck. Poultry Science 93: 3104-3111.CrossRefGoogle ScholarPubMed
ZHAO, F.Q., ZHANG, Z.W., QU, J.P., YAO, H.D., LI, M., LI, S. and XU, S.W. (2014) Cold stress induces antioxidants and Hsps in chicken immune organs. Cell Stress Chaperones 19: 635-648.CrossRefGoogle ScholarPubMed