Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T10:08:04.769Z Has data issue: false hasContentIssue false

Probiotic microorganisms- identification, metabolic and physiological impact on poultry

Published online by Cambridge University Press:  05 September 2013

S.H. KHAN*
Affiliation:
Poultry Research Institute, Murree Road, Shamsabad, Rawalpindi, Pakistan
*
Corresponding author: [email protected]; [email protected]
Get access

Abstract

The increase in the productivity of the poultry industry has been accompanied by various impacts, including the emergence of a large variety of pathogens and bacterial resistance to antibiotics. These impacts are in part due to the haphazard use of chemotherapeutic agents as a result of management practices during the rearing period. Probiotic bacteria are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. This paper provides a review of the use of probiotics for the prevention of enteric disease in poultry, probiotic selection, isolation, colonisation and attachment within gastrointestinal tract, and the potential role of probiotics in nutrient metabolism. Understanding how probiotic bacteria exert their beneficial effect is crucial for the establishment of definitive selection criteria.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BAR-SHIRA, E. and FRIEDMAN, A. (2006) Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched chick. Developmental and Comparative Immunology 30: 930-941.CrossRefGoogle ScholarPubMed
BIANCHI, M.A., DEL RIO, D., PELLEGRINI, N., SANSEBASTIANO, G., NEVIANI, E. and BRIGHENTI, F. (2004) A fluorescence-based method for the detection of adhesive properties of lactic acid bacteria to Caco-2 cells, Letters in Applied Microbiology 39: 301-305.CrossRefGoogle ScholarPubMed
BIELKE, L.R., ELWOOD, A.L., DONOGHUE, D.J., DONOGHUE, A.M., NEWBERRY, L.A., NEIGHBOR, N.K. and HARGIS, B.M. (2003) Approach for selection of individual enteric bacteria for competitive exclusion in turkey poults. Poultry Science 82: 1378-1382.CrossRefGoogle ScholarPubMed
BLANKENSHIP, L.C., BAILEY, J.S., COX, N.A., STERN, N.J., BREWER, R. and WILLIAMS, O. (1993) Two-step mucosal competitive exclusion flora treatment to diminish Salmonellae in commercial broiler chickens. Poultry Science 72: 1667-1672.CrossRefGoogle ScholarPubMed
BUSCH, A., HANS-HEINRICH, H., IMKE, K., ORTWIN, S., JÜRGEN, S. and ELVIRA, S. (2004) Probiotics in animal nutrition. Arbeitsgemeinschaft für Wirkstoffe in der Tierernährung e.V. (Ed.), published by Agrimedia GmbH, pp: 3-7.Google Scholar
BUTS, J., DeKEYSER, N., STILMANT, C., SOKAL, E. and MARANDI, S. (2002) Saccharomyes boulardii enhances N-terminal peptide hydrolysis in suckling rat small intestine by endoluminal release of a zinc-binding metalloprotease. Pediatric Research 51: 528-534.CrossRefGoogle Scholar
CABALLERO-FRANCO, C., KELLER, K., DESIMONE, C. and CHADEE, K. (2007) The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. American journal of Physiology Gastrointestinal Liver Physiology 292: G315-G322.CrossRefGoogle ScholarPubMed
CHICHLOWSKI, M., CROOM, W.J. FROETSCHEL, M.A., , KOCI, M.D., McBRIDE, B.M., QIU, R. and DANIEL, L.R. (2006) Effect of Primalac, direct fed microbial, on ileal absorption, energy expenditure and intestinal microbial fermentation (abstract). Poultry Science Suppl 1: 33.Google Scholar
CHICHLOWSKI, M., CROOM, W.J., McBRIDE, B.W., QIU, R., CHIANG, C.C., DANIEL, L.R., HAVENSTEIN, G.B. and KOCI, M.D. (2007) Micro-architecture and spatial relationship between bacteria and ileal, cecal and colonic epithelium in chicks fed a direct-fed microbial and salinomycin. Poultry Science 86: 1121-1132.CrossRefGoogle Scholar
CORCIONIVOSCHI, N. and DRINCEANU, D. (2009) Probioticele-la timpul prezent. Editura Mirton, Timisoara.Google Scholar
DAVIS, G.S. and ANDERSON, K.E. (2002) The effects of feeding the direct-fed microbial, primalac, on growth parameters and egg production in single comb white leghorn hens. Poultry Science 81: 755-759.CrossRefGoogle ScholarPubMed
DOMMETT, R., ZILBAUER, M., GEORGE, J.T. and BAJAJ-ELLIOTT, M. (2005) Innate immune defense in the human gastrointestinal tract. Molecular Immunology 42: 903-912.CrossRefGoogle ScholarPubMed
EBERL, G. (2005) Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nature Reviews Immunology 5: 413-420.CrossRefGoogle ScholarPubMed
EDENS, F.W., PARKHURST, C.R., CASAS, I.A. and DOBROGOSZ, W.J. (1997) Principles of ex ovo competitive exclusion and in ovo administration of Lactobacillus reuteri. Poultry Science 76: l79-196.CrossRefGoogle ScholarPubMed
EUROPEAN COMMISSION, (2003) Regulation 1831 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Official Journal of the European Union L 268/29.Google Scholar
FAO/WHO, (2002) Working group report on drafting guidelines for the evaluation of probiotics in food. 30 April-1May, London, UK and Ontario, Canada, FAO, Rome, Italy.Google Scholar
FOOKS, L. and GIBSON, G. (2002) Probiotics as modulators of the gut flora. British Journal of Nutrition 88: S39-S49.CrossRefGoogle ScholarPubMed
FUJISAWA, T., BENNO, Y., YAESHIMA, T. and MITSUOKA, T. (1992) Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al., 1980) with the type strain of Lactobacillus amylovorus (Nakamura 1981). International Journal of Systematic Bacteriology 42: 487-491.CrossRefGoogle Scholar
FULLER, R. (1989) Probiotics in man and animals. Journal of Applied Bacteriology 66: 365-378.Google Scholar
GASKINS, H. (2003) The commensal microbiota and developments of enterocytesl defense in the mammalian intestine. 9th Int. Symp. Digestive Physiology in Pigs 1: 57-71.Google Scholar
GILL, H.S., RUTHERFURD, K.J., CROSS, M.L. and GOPAL, P.K. (2001) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. American Journal of Clinical Nutrition 74: 833-839.CrossRefGoogle ScholarPubMed
GUEIMONDE, M., TOLKKO, S., KORPIMAKI, T. and SALMINENE, S. (2004) New real-time quantitative PCR procedure for quantification of Bifidobacteria in human faecal samples. Applied and Environmental Microbiology 70: 4165-4169.CrossRefGoogle Scholar
GUSILS, C., GONZÁLEZ, S.N. and OLIVER, G. (1999) Some probiotic properties of chicken lactobacilli, Canadian Journal of Microbiology/Review of Canadian Microbiology 45: 981-987.Google Scholar
GUSILS, C., OPPEZZO, O., PIZARRO, R. and GONZALEZ, S. (2003) Adhesion of probiotic lactobacilli to chick intestinal mucus. Canadian Journal of Microbiology 49: 472-478.CrossRefGoogle ScholarPubMed
HECZKO, U., ABE, A. and FINLAY, B.B. (2000) Segmented filamentous bacteria prevent colonisation of enteropathogenic Escherichia coli O103 in rabbits. Journal of Infectious Diseases 181: 1027-1033.CrossRefGoogle ScholarPubMed
HENRIKSSON, A., SZEWZYK, R. and CONWAY, P.L. (1991) Characteristics of the adhesive determinants of Lactobacillus fermentum 104. Applied and Environmental Microbiology 57: 499-502.Google Scholar
HIGGINS, S.E., HIGGINS, J.P., WOLFENDEN, A.D., HENDERSON, S.N., TORRES-RODRINGUES, A., TELLEZ, G. and HARGIS, B. (2008) Evaluation of a Lactobacillus-based probiotic culture for the reduction of Salmonella Enteritidis in neonatal broiler chicks. Poultry Science 87: 27-31.CrossRefGoogle ScholarPubMed
JACOBSEN, C.N., ROSENFELDT, , NIELSEN, V., HAYFORD, A.E., MOLLER, P.L., MICHAELSEN, K.F., PAERREGAARD, A., SANDSTROM, B., TVEDE, M. and JAKOBSEN, M. (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonisation ability of five selected strains in humans. Applied and Environmental Microbiology 65: 4949-4956.CrossRefGoogle ScholarPubMed
KANKAANPAA, P., YANG, B., KALLIO, H., ISOLAURI, E. and SALMINEN, S. (2004) Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of lactobacilli. Applied and Environmental Microbiology 70: 129-136.Google Scholar
KHAN, S.H., HASAN, S., SARDAR, R. and DIL, S. (2011a) Effect of dietary supplementation of probiotic on the performance of F1 crossbred (Rhode Island red male x Fayoumi female) cockerels. Journal of Animal Physiology and Animal Nutrition 95: 523-532.CrossRefGoogle Scholar
KHAN, S.H., YOUSAF, B., MIAN, A.A., REHMAN, A. and FAROOQ, M.S. (2011b) Assessing the effect of administering different probiotics in drinking water supplement on broiler performance, blood biochemistry and immune response, Journal of Applied Animal Research 39(4): 418-428.Google Scholar
KLOSE, V., MOHNL, M., PLAIL, R., SCHATZMAYR, G. and LOIBNER, A.P. (2006) Development of a competitive exclusion product for poultry meeting the regulatory requirements for registration in the European Union. Molecular Nutrition Food and Research 50:563-571.Google Scholar
KOHLER, H., RODRIGUES, S.P., MAURELLI, A.T. and McCORMICK, B.A. (2002) Inhibition of Salmonella typhimurium enteropathogenicity by piperidine, a metabolite of the polyamine cadaverine. Journal of Infectious Diseases 186: 1122-1130.Google Scholar
KOHLER, H., McCORMICK, B. and WALKER, W. (2003) Bacterialenterocyte crosstalk: Cellular mechanisms in health and disease. Journal of Pediatric Gastroenterology and Nutrition 36: 175-185.Google ScholarPubMed
LE BLAY, G., FLISS, I. and LACROIX, C. (2004) Comparative detection of bacterial adhesion to Caco-2 cells with ELISA, radioactivity and plate count methods. Journal of Microbiological Methods 59: 211-222.Google Scholar
LIKOTRAFITI, E., MANDERSON, K.S., FAVA, F., TUOHY, K.M., GIBSON, G.R. and RASTALL, R.A. (2004) Molecular identification and anti-pathogenic activities of putative probiotic bacteria isolated from faeces of healthy elderly individuals. Microbial Ecology in Health and Disease 16: 105-112.CrossRefGoogle Scholar
LIM, H.J., KIM, S.Y. and LEE, W.K. (2004) Isolation of cholesterol-lowering lactic acid bacteria from human intestine for probiotic use. Journal of Veterinary Science 5: 391-395.Google Scholar
LIN, M.Y. and CHANG, F.J. (2000) Antioxidative effect of intestinal bacteria bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive Diseases and Sciences 45: 1617-1622.CrossRefGoogle ScholarPubMed
MACFARLANE, G.T. and CUMMINGS, J.H. (1999) Probiotics and prebiotics: can regulating the activities of intestinal bacteria benefit health? British Medical Journal 318: 999-1003.CrossRefGoogle ScholarPubMed
MADSEN, K., CORNISH, A., SOPER, P., McKAIGNEY, C., JIJON, H., YACHIMEC, C., DOYLE, J., JEWELL, L. and DeSIMONE, C. (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121: 580-591.CrossRefGoogle ScholarPubMed
MAHMOOD, T., MUHAMMAD, S.A., IMTIAZ, H. and RASHIDA, P. (2005) Effect of probiotic and growth promoters on chemical composition of broiler carcass. International Journal of Agriculture & Biology 7(6): 1036-1037.Google Scholar
MAI, V. (2004) Dietary Modification of the Intestinal Microbiota. Nutrition Review 62: 235-242.Google Scholar
MARTEAU, P. (2000) Role of the intestinal flora in gastrointestinal diseases. The Lancet 356 Supplement: 28.CrossRefGoogle Scholar
MARTEAU, P., SEKSIK, P., LEPAGE, P. and DORE, J. (2004) Cellular and physiological effects of probiotics and prebiotics. Mini-Reviews in Medicinal Chemistry 4: 889-896.Google Scholar
MASON, C.K., COLLINS, M.A. and THOMPSON, K. (2005) Modified electroporation protocol for Lactobacilli isolated from the chicken crop facilitates transformation and the use of a genetic tool. Journal of Microbiological Methods 60: 353-363.Google Scholar
McDERMOTT, P.F., ZHAO, S., WAGNER, D.D., SIMJEE, S., WALKER, R.D. and WHITE, D.G. (2002) The food safety perspective of antibiotic resistance. Animal Biotechnology 13: 71-84.CrossRefGoogle ScholarPubMed
NG, S.C., HART, A.L., KAMM, M.A., STAGG, A.J. and KNIGHT, S.C. (2009) Mechanisms of action of probiotics: Recent advances. Inflammatory Bowel Disease 15: 300-310.Google Scholar
NIAMSUP, P., SUJAYA, I.N., TANAKA, M., SONE, T., HANADA, S., KAMAGATA, Y., LUMYOUNG, S., ASSAVANIG, A., ASANO, K., TOMITA, F. and YOKOTA, A. (2003) Lactobacillus thermotolerans sp. nov., a novel thermotolerant species isolated from chicken faeces. International Journal of Systematic and Evolutionary Microbiology 53: 263-268.Google Scholar
PATTERSON, J.A. and BURKHOLDER, K. (2003) Application of prebiotics and probiotics in poultry production. Poultry Science 82: 627-631.CrossRefGoogle ScholarPubMed
RASTALL, R. (2004) Bacteria in the gut: Friends and foes and how to alter the balance. Journal of Nutrition 134: 2022S-2026S.Google Scholar
RISØEN, P.A., RØNNING, P., HEGNA, I.K. and KOLSTØ, A.B. (2004) Characterization of a broad range antimicrobial substance from Bacillus cereus. Journal of Applied Microbiology 96: 648.Google Scholar
ROJAS, M. and CONWAY, P.L. (1996) Colonisation by lactobacilli of piglet small intestinal mucus. Journal of Applied Bacteriology 81: 474-480.CrossRefGoogle ScholarPubMed
SALMINEN, E., OUWEHAND, A.C. and ISOLAURI, E. (1998) Clinical application of probiotic bacteria. International Dairy Journal 8: 563-572.Google Scholar
SAREM-DAMERDJI, L., SAREM, F., MARCHAL, L. and NICOLAS, J.P. (1995) In vitro colonisation ability of human colon enterocytes by exogenous Lactobacillus strains. FEMS Microbiological Letter 131: 133-137.CrossRefGoogle Scholar
SELIM, A.S.M., BOONKUMKLAO, P., SONE, T., ASSAVANIG, A., WADA, M. and YOKOTA, A. (2005) Development and assessment of a real- -time PCR assay for rapid and sensitive detection of a novel thermotolerant bacterium, Lactobacillus thermotolerans, in chicken feces. Applied and Environmental Microbiology 71: 4214-4219.Google Scholar
SHEN, T.Y., QIN, H.L., GAO, Z.G., FAN, X.B., HANG, X.M. and JIANG, Y.Q. (2006) Influences of enteral nutrition combined with probiotics on gut microflora and barrier function of rats with abdominal infection. World Journal of Gastroenterology 12: 4352-4358.CrossRefGoogle ScholarPubMed
SHIN, M.S., HAN, S.K., JI, A.R., KIM, K.S. and LEE, W.K. (2008) Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. Journal of Applied Microbiology 105: 2203-2212.Google Scholar
SIMON, O., VAHJEN, W. and TARAS, D. (2004) Interaction of nutrition with intestinal microbial communities., in: TUCKER, L.A. & TAILOR-PICKARD, J.A. (Eds) "Interfacing Immunity, Gut Health and Performance", pp. 33-46 (Nottingham University Press, Nottingham, UK).Google Scholar
SNEL, J., HARMSEN, H.J.M., WIELEN, P.W.J.J.V.D. and WILLIAMS, B.A. (2002) Dietary strategies to influence the gastrointestinal microflora of young animals, and its potential to improve intestinal health, in: BLOK, M.C., VAHL, H.A., LANDE, L.D., BRAAK, A.E.V.D., HEMKE, G. & HESSING, M. (Eds) Nutrition and health of the gastrointestinal tract, pp. 37-69 (Wageningen Academic Publishers, Wageningen).Google Scholar
SOW, N.M., DAUPHIN, R.D., ROBLAIN, D., GUIRO, A.T. and THONART, P. (2005) Polyphasic identification of a new thermotolerant species of lactic acid bacteria isolated from chicken faeces. African Journal of Biotechnology 4: 409-421.Google Scholar
TEMMERMAN, R., POT, B., HUYS, G. and SWINGS, J. (2002) Identification and antibiotic susceptibility of bacterial isolates from probiotic products. International Journal of Food Microbiology 81: 1-10.CrossRefGoogle Scholar
THANARUTTIKANNONT, T. and RENGPIPAT, S. (1995) Use of lactic acid bacteria as probiotic supplement in chicken feed, University of Chulalongkorn, Bangkok, Thailand.Google Scholar
TOURE, R., KHEADR, E., LACROIX, C., MORONI, O. and FLISS, I. (2003) Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. Journal of Applied Microbiology 95: 1058-1069.CrossRefGoogle ScholarPubMed
WILSON, K.H. and BLITCHINGTON, R.B. (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Applied Environmental Microbiology 62: 2273-2278.Google Scholar
YAMAUCHI, K. and SNEL, J. (2000) Transmission electron microscopic demonstration of phagocytosis and intracellular processing of segmented filamentous bacteria by intestinal epithelial cells of the chick ileum. Infection and Immunity 68: 6496-6504.Google Scholar
YANG, J.L., CHENG, A.C., WANG, M.S., PAN, K.C., LUO, Q.H., ZHU, D.K., CHEN, X.Y. and Qi, X.F. (2009) New strategies for electrophoresis analysis of enterobacterial repetitive intergenic consensus PCR in animal intestinal microflora. Journal of Microbiological Methods 77: 63-66.CrossRefGoogle ScholarPubMed