Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T23:36:27.577Z Has data issue: false hasContentIssue false

Natural and synthetic oligosaccharides in broiler chicken diets

Published online by Cambridge University Press:  18 September 2007

P.A. Iji
Affiliation:
Department of Animal Science, University of Adelaide, Waite Campus, Glen Osmond 5064, Australia
D.R. Tivey
Affiliation:
Department of Animal Science, University of Adelaide, Waite Campus, Glen Osmond 5064, Australia
Get access

Abstract

This review presents findings on the influence of natural raffinose series oligosaccharides and synthetic (industrial) products on the productivity of broiler chicken. There is evidence of negative effects on animal health and productivity from the use of raffinose series oligosaccharides, but beneficial effects from synthetic oligosaccharides. Part of this contradiction may be due to differences in the chemical nature of the supplements, the level of supplementation or the duration of feeding. The future for synthetic oligosaccharides is bright, but further adoption of natural sources requires a greater understanding of their chemistry to facilitate the production of beneficial compounds and the elimination of detrimental fractions. Most current literature favours the inclusion of various oligosaccharides in the diet. The cost of production could be minimised by the use of natural ingredients which contain oligosaccharides, or by cheap synthetic products, sources of which are highlighted in this review.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALLTECH Inc. (1994) Bio-Mos reference manual. Alltech Inc., Nicholasville, USA, 15 pp.Google Scholar
Amuti, K.S. and Pollard, C.J. (1977) Soluble carbohydrates of dry and developing seeds. Phytochem 16: 529532CrossRefGoogle Scholar
Attia, R.S., El-Tabey, S.A.M., Aman, M.E and Hamza, M.A. (1994) Effect of cooking and decortication on the physical properties, the chemical composition and the nutritive value of chickpea (Cicer arietinum L.). Food Chemistry 50: 125131CrossRefGoogle Scholar
Bailey, J.S., Blankenship, L.C. and Cox, N.A. (1991) Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poultry Science 70: 24332438CrossRefGoogle ScholarPubMed
Barnes, E.M., Impey, C.S. and Stevens, B.J.H. (1979) Factors affecting the incidence and antisalmonella activity of the anaerobic caecal flora of the young chick. Journal of Hygiene 82: 263283CrossRefGoogle ScholarPubMed
Brenes, A.Mareqardt, R.R., Guenter, W. and Rotter, B.A. (1993) Effect of enzyme supplementation on the nutritive value of raw, autoclaved and dehulled lupins (Lupinus albus) in chicken diets. Poultry Science 72: 22812293CrossRefGoogle Scholar
Bryden, W.L., Gill, R.J. and Balnave, D. (1994) Feed enzyme supplement improves the apparent metabolizable energy of lupins for broiler chicks. Australian Poultry Science Symposium115Google Scholar
Camacho, L., Sierra, C., Campos, R.R., Guzman, C.E. and Marcus, W.D. (1992) Nutritional changes caused by germination of staple Chilean legumes. Archivos Latinoamericanos de Nutricion 42: 283290Google Scholar
Carre, B., Gomez, J. and Chagneau, A.M. (1995) Contribution of oligosaccharide and polysaccharide digestion, and excreta losses of lactic acid and short chain fatty acids, to dietary metabolisable energy values in broiler chickens and adult cockerels. British Poultry Science 36: 611629CrossRefGoogle ScholarPubMed
Centeno, C., Yuste, P., Rubio, L.A., Trevino, J. and Brenes, A. (1990) Effect of including lupin (Lupinus albus) and flavomycin in diets for broiler chickens. Archivos de Zootecnia 39: 1524Google Scholar
Chesson, A. (1993) Probiotics and other intestinal mediators. In: Principles of Pig Science (Cole, D.J.A., Wiseman, J. and Varley, M.A., Eds), Nottingham University Press pp. 197214Google Scholar
Choi, K.H., Namkung, H. and Paik, I.K. (1994) Effects of dietary fructooligosaccharides on the suppression of intestinal colonization of Salmonella typhimurium in broiler chickens. Korean Journal of Animal Science 36: 271284Google Scholar
Coon, C.N., Leske, K.L., Akavanichan, O. and Cheng, T.K. (1990) Effect of oligosaccharide free soybean meal on true metabolizable energy and fiber digestion in adult roosters and broilers. Zootecnica International September, 4450Google Scholar
Coon, C.N., Leske, K.L., Akavanichan, O. and Cheng, T.K. (1990) Effect of oligosaccharide free soybean meal on true metabolizable energy and fiber digestion in adult roosters. Poultry Science 69: 787793CrossRefGoogle ScholarPubMed
Dudley-Cash, W.A. and Halloran, H.R. (1988) New soybean meal looks promising for poultry industry. Feedstuffs 60: 1314Google Scholar
Durst, L. (1996) Inclusion of fructo- and galacto-oligosaccharides in broiler diets. Archiv fur Geflugelkunde 60: 160164Google Scholar
El-Faki, H.A., Bhavanishangar, T.N., Tharanathan, R.N. and Desikachar, H.S.R. (1983) Flatus effect of chick pea (Cicer arietinum), cow pea (Vigna sinensis) and horse gram (Dolichos biflorus) and their isolated carbohydrate fractions. Nutrition Report International 27: 921929Google Scholar
Evans, A.J., Cheung, P.C.K. and Cheetham, W.H. (1993) The carbohydrate composition of cotyledons and hulls of cultivars of Lupinus angustifolius from Western Australia. Journal of Science Food and Agriculture 61: 189194CrossRefGoogle Scholar
Ferket, P.R. (1991) Effect of diet on gut microflora of poultry. Zootecnica International 78, 4449Google Scholar
Fishbein, L., Kaplan, M. and Gough, M. (1988) Fructooligosaccharides, a review. Veterinary Human Toxicology 30: 104107Google ScholarPubMed
Fleming, S.E. (1981) A study of relationships between flatus potential and carbohydrate distribution in legume seeds. Journal of Food Science 46: 794798CrossRefGoogle Scholar
Hellendoorn, E.W. (1979) Beneficial physiological activity of leguminous seeds. Qualitas Plantarum 29: 227244CrossRefGoogle Scholar
Irish, G.G. and Balnave, D. (1993) Non-starch polysaccharides and broiler performance on diets containing soyabean meal as the sole protein concentrate. Australian Journal of Agricultural Research 44: 14831499CrossRefGoogle Scholar
Irish, G.G., Barbour, G.W., Classen, H.L., Tyler, R.T. and Bedford, M.R. (1995) Removal of the alpha galactosides of sucrose from soybean meal using either ethanol extraction or exogenous alpha galactosidase and broiler performance. Poultry Science 74: 14841494CrossRefGoogle ScholarPubMed
Iyengar, A.K. and Kulkarni, P.R. (1977) Oligosaccharide levels of processed legumes. Journal of Food Science Technology, India 14: 222223Google Scholar
Korytnyx, W. and Metzler, E. (1962) Formation of raffinose and stachyose in lima beans. Nature 95: 616617CrossRefGoogle Scholar
Lacassagne, L. (1988) Substitutes for soyabean meal in the feeding of poultry. Productions Animales 1: 4757CrossRefGoogle Scholar
Leske, K.L., Akavanichan, O., Cheng, T.K. and Coon, C.N. (1991) Effect of ethanol extract on nitrogen corrected true metabolizable energy for soybean meal with broilers and roosters. Poultry Science 70: 892895CrossRefGoogle Scholar
Leske, K.L., Jevne, C.J. and Coon, C.N. (1991) Extraction methods for removing soybean alpha galactosides and improving true metabolizable energy for poultry. Animal Feed Science Technology 41: 7378CrossRefGoogle Scholar
Leske, K.L., Jevne, C.J. and Coon, C.N. (1993) Effect of oligosaccharide additions on nitrogen corrected true metabolizable energy of soy protein concentrate. Poultry Science 72: 664668CrossRefGoogle ScholarPubMed
Manley, H.M and Richards, G.N. (1994) Nutritional gains from sucrose caramels, a synopsis of the potential. International Sugar Journal 96: 1144.Google Scholar
Mohamed, A.A. and RAYAS-Duarte, P. (1995) Composition of Lupinus albus. Cereal Chemistry 72: 643647Google Scholar
Monsan, P.F. and Paul, F. (1995) Oligosaccharide feed additives. In Biotechnology in Animal Feeds and Feeding (Wallace, R.J. and Chesson, A., Eds), VCII Verlagsgesellschaft, Weinheim and New York, pp. 233245CrossRefGoogle Scholar
Morgan, A.J., Mul, A.J., Beldman, G. and Voragen, A.G.J. (1992) Dietary oligosaccharides. New insights. Agro. Food Ind. Hi-tech. 11/12, 3538Google Scholar
Okumura, J., Furuse, M., Kawamura, T., Toyoshima, K., Sugawara, M., Suzuki, T., Seo, G. and Soga, H. (1994) Effects of glucooligosaccharide and biobacteria on egg production rate and cecal bacterial population in the chicken. Japanese Poultry Science 31: 189194CrossRefGoogle Scholar
Oyarzabal, O.A. and Conner, D.E. (1995) In vitro fructooligosaccharide utilization and inhibition of Salmonella spp. by selected bacteria. Poultry Science 74: 14181425CrossRefGoogle ScholarPubMed
Oyarzabal, O.A. and Conner, D.E. (1996) Application of direct fed microbial bacteria and fructooligosaccharides for Salmonella control in broilers during feed withdrawal. Poultry Science 75: 186190CrossRefGoogle ScholarPubMed
Perry, F.G. (1995) Biotechnology in animal feeds and feeding, an overview. In Biotechnology in Animal Feeds and Feeding (Wallace, R.J. and Chesson, A., Eds), VCH Verlagsgesellschaft, Weinheim and New York, pp. 115Google Scholar
Petterson, D.S. and Mackintosh, J.B. (1994) The Chemical Composition and Nutritive Value of Australian Grain Legumes, Grains Research and Development Corporation, Brisbane, Australia, pp. 10–13, 3841Google Scholar
Pusztai, A.J., Perry, F.G., Morgan, A.J. and Mul, A.J. (1995) The use of mannan-rich materials in feedstuffs. PCT International Patent Application. WO 95–17103 A1, 28 pp.Google Scholar
Rackis, J.J. (1975) Oligosaccharides of food legumes: alpha-galactosidase activity and flatus problems. In Physiological Effects of Food Carbohydrates (Allen, J. and Heilge, J., Eds), American Chemical Society, Washington, D.C., USA, pp. 207222CrossRefGoogle Scholar
Rao, P.U. and Belavady, B. (1978) Oligosaccharides in pulses: varietal differences and effects of cooking and germination. Journal of Agriculture Food Chemistry 26: 316319CrossRefGoogle Scholar
Reddy, N.R. and Salunkhe, D.K. (1980) Changes in oligosaccharides during germination and cooking of black gram and fermentation of black gram/rice blend. Cereal Chemistry 57: 356360Google Scholar
Rossi, M., Germondari, I. and Casini, P. (1984) Comparison of chickpea cultivars, chemical composition, nutritional evaluation, and oligosaccharide content. Journal of Agriculture Food Chemistry 32: 811814CrossRefGoogle Scholar
Saini, H.S. (1988) Extractability and evaluation of alpha galactosides of sucrose in leguminous seeds. Food Chemistry 28: 149157CrossRefGoogle Scholar
Saini, H.S. and Gladstones, J.S. (1986) Variability in the total and component galactosyl sucrose oligosaccharides of Lupinus species. Australian Journal of Agricultural Research 37: 157166CrossRefGoogle Scholar
Saini, H.S. and Knights, E.J. (1984) Chemical constitution of starch and oligosaccharide components of “Desi” and “Kabuli: chickpea (Cicer arietinum) seed types. Journal of Agriculture Food Chemistry 32: 940944CrossRefGoogle Scholar
Salyers, A.A., Palmer, J.K and Wilkins, T.D. (1978) Degradation of polysaccharides by intestinal bacterial enzymes. American Journal of Clinical Nutrition 31: S128–130CrossRefGoogle ScholarPubMed
Savage, T.F., Zakrzewska, E.I. and Andreasen, J.R. (1997) The effects of feeding mannan oligosaccharide supplemented diets to poults on performance and the morphology of the small intestine. Presented at the Southern Conference on Avian Diseases, Southern Poultry Science Society, January 1997Google Scholar
Schoeni, J.L. and Wong, A.C.L. (1994) Inhibition ofCampylobacter jejuni colonization in chicks by defined competitive exclusion bacteria. Applied Environmental Microbiology 60: 11911197CrossRefGoogle Scholar
Schweizer, T.F., Horman, I. and Wursch, P. (1978) Low molecular weight carbohydrates from leguminous seeds; a new disaccharide: Galactopinitol. Journal of Science Food Agriculture 29: 148154CrossRefGoogle Scholar
Slominski, B.A., Campbell, L.D. and Guenter, W. (1992) Enhancement of the feeding value of low glucosinolate rapeseed by the supplementation of poultry diets with exogenous enzymes. Proceedings of the 19th World's Poultry Congress,Amsterdam,Netherlands, 20–24 September 1992, Volume 2, 241245Google Scholar
Slominski, B.A., Campbell, L.D. and Guenter, W. (1994) Oligosaccharides in canola meal and their effect on nonstarch polysaccharide digestibility and true metabolizable energy in poultry. Poultry Science, 73: 156162CrossRefGoogle ScholarPubMed
Spaeth, G., Berg, R.D., Specian, R.D. and Deitch, E.A. (1990) Food without fibre promotes bacterial translocation from the gut. Surgery 108: 240247Google ScholarPubMed
Terada, A., Hara, H., Sakamoto, J., Sato, N., Takagi, S., Mitsuoka, T., Mino, R., Hara, K., Fujimori, I. and Yamada, T. (1994) Effects of dietary supplementation with lactosucrose (4G-beta-D-galactosylsucrose) on cecal flora, cecal metabolites, and performance in broiler chickens. Poultry Science 73: 16631672CrossRefGoogle ScholarPubMed
Trevino, J., Centeno, C., Brenes, A., Yuste, P. and Rubio, L. (1990) Effect of dietary oligosaccharides on the digestion of pea starch by growing chicks. Animal Feed Science Technology 30: 313319CrossRefGoogle Scholar
Unno, T., Sugawara, M., Nakakuki, T. and Okada, G. (1993) Effect of β-gluco-oligosaccharides on the human intestinal microflora. Journal of Starch Related Carbohydrates Enzymes 40: 2127Google Scholar
Waldroup, A.L., Skinner, J.T., Hierholzer, R.E. and Waldroup, P.W. (1993) An evaluation of fructooligosaccharide in diets for broiler chickens and effects on salmonellae contamination of carcasses. Poultry Science 72: 643650CrossRefGoogle ScholarPubMed
Wells, C.L. (1990) Relationship between intestinal microecology and the translocation of intestinal bacteria. Ant van Leeuw. 58: 8793CrossRefGoogle ScholarPubMed