Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T03:11:08.078Z Has data issue: false hasContentIssue false

Genomic research and applications in the duck (Anas platyrhynchos)

Published online by Cambridge University Press:  05 September 2008

Y.H. HUANG
Affiliation:
State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, People's Republic of China Department of Genomics and Genetics, Roslin Institute (Edinburgh University), Roslin, Midlothian, EH25 9PS, UK
N. LI*
Affiliation:
State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, People's Republic of China
D.W. BURT
Affiliation:
Department of Genomics and Genetics, Roslin Institute (Edinburgh University), Roslin, Midlothian, EH25 9PS, UK
F. WU
Affiliation:
State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, People's Republic of China
*
Corresponding author: [email protected]
Get access

Abstract

As a major natural reservoir of influenza virus and an important food source, the duck is of great biological interest, e.g. in the area of host-pathogen interactions. Recently, preliminary genetic and cytogenetic maps of the duck have become available, providing for the first time a glimpse at a comparative map between the duck and chicken. These genetic tools have been used to detect QTLs related to duck growth, carcass and meat quality traits. However, molecular genetic research in the duck is only in its infancy. In the future we can expect the development of new duck resources, including a high-density genetic map, detailed comparative maps with the chicken and other vertebrates - and given the pace of genomics, possibly a genome sequence. These new resources will be used to evaluate the genetic diversity of global duck breeds, to define genetic markers to increase the quantity and quality of egg and meat products, and to aid in the battle against infectious diseases, such as avian influenza.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AHMADI, A.K., RAHIMI, G., VAFAEI, A. and SAYYAZADEH, H. (2007) Microsatellite Analysis of Genetic Diversity in Pekin (Anas Platyrhynchos) and Muscovy (Cairna moschata) Duck Populations. International Journal of Poultry Science 6: 378-382.CrossRefGoogle Scholar
ANDERSSON, L. (2001) Genetic dissection of phenotypic diversity in farm animals. Nature Review Genetics 2: 130-138.CrossRefGoogle ScholarPubMed
ARCHIBALD, A.L., HALEY, C.S., BROWN, J.F., COUPERWHITE, S., MCQUEEN, H.A., NICHOLSON, D., COPPIETERS, W., VAN DE WEGHE, A., STRATIL, A., WINTERO, A.K., FREDHOLM, M., LARSEN, N.J., NIELSEN, V.H., MILAN, D., WOLOSZYN, N., ROBIC, A., DALENS, M., RIQUET J., , GELLIN, J., CARITEZ, J.C., BURGAUD, G., OLLIVIER, L., BIDANEL, J.P., VAIMAN, M., RENARD, C., GELDERMANN, H., DAVOLI, R., RUYTER, D., VERSTEGE, E.J.M., GROENEN, M.A.M., DAVIES, W., HOYHEIM, B., KEISERUD, A., ANDERSSON, L., ELLEGREN, H., JOHANSSON, M., MARKLUND, L., MILLER, J.R., ANDERSSON DEAR, D.V., SIGNER, E., JEFFREYS, A.J., MORAN, C., TISSIER, P.L., MULADNO, , ROTHSCHILD, M.F., TUGGLE, C.K., VASKE, D., HELM, J., LIU, H.C., RAHMAN, A., YU, T.P., LARSON, R.G. and SCHMITZ, C.B. (1995) The PiGMaP consortium linkage map of the pig (Sus scrofa). Mammal Genome 3: 157-175.CrossRefGoogle Scholar
AUSTIN, C.P. (2004) The impact of the completed human genome sequence on the development of novel therapeutics for human disease. Annual Review of Medicine 55: 1-13.CrossRefGoogle ScholarPubMed
BUCHHOLZ, W.G., PEARCE, J.M., PIERSON, B.J. and SCRIBNER, K.T. (1998) Dinucleotide repeat polymorphisms in waterfowl (family Anatidae): characterization of a sex-linked (Z-specific) and 14 autosomal loci. Animal Genetics 29: 323-325.Google ScholarPubMed
BURT, D.W. (2006) Chicken genome: Current status and future opportunities. Genome Research 15: 1692-1698.CrossRefGoogle Scholar
CRITTENDEN, L.B., PROVENCHER, L., SANTANGELO, L., LEVIN, I., ABPLANALP, H., BRILES, R.W., BRILES, W.E. and DODGSON, J.B. (1993) Characterization of a Red Jungle Fowl by White Leghorn back cross reference population for molecular mapping of the chicken genome. Poultry Science 72: 334-348.CrossRefGoogle Scholar
FIELDS, R.L. and SCRIBNER, K.T. (1997) Isolation and characterization of novel waterfowl microsatellite loci: cross-species comparisons and research applications. Molecular Ecology 6: 199-202.CrossRefGoogle ScholarPubMed
FILLON, V., VIGNOLES, M., CROOIJMANS, R.P., GROENEN, M.A., ZOOROB, R. and VIGNAL, A. (2007) FISH mapping of 57 BAC clones reveals strong conservation of synteny between Galliformes and Anseriformes. Animal Genetics 38: 303-307.CrossRefGoogle ScholarPubMed
FISCHER, K.P., GARES, S.L., WANG, D., TYRELL, D.L. and GUTFREUND, K.S. (2007) Identification and characterization of functional CD154 (CD40 ligand) in the Pekin duck. Developmental and Comparative Immunology 31: 61-71.CrossRefGoogle ScholarPubMed
FREEMAN, A.R., BRADLEY, D.G., NAGDA, S., GIBSON, J.P. and HANOTTE, O. (2006) Combination of multiple microsatellite data sets to investigate genetic diversity and admixture of domestic cattle. Animal Genetics 37: 1-9.CrossRefGoogle ScholarPubMed
GODDARD, M.E. and HAYES, B.J. (2007) Genomic selection. Journal of Animal Breeding and Genetics 124: 323-330.CrossRefGoogle ScholarPubMed
GRIFFIN, D.K., ROBERTSON, L.B.W., TEMPEST, H.G. and SKINNER, B.M. (2007) The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenetic and. Genome Research 117: 64-77.CrossRefGoogle ScholarPubMed
GROENEN, M.A., CHENG, H.H., BUMSTEAD, N., BENKEL, B.F., BRILES, W.E., BURKE, T., BURT, D.W., CRITTENDEN, L.B., DODGSON, L., HILLEL, J., LAMONT, S., DE LEON, A.P., TAKAHASHI, H. and VIGNAL, A. (2000) A consensus linkage map of the chicken genome. Genome Research 10: 137-147.Google ScholarPubMed
GUAN, Z.B., YE, J.J., DAN, W.B., YAO, W.J. and ZHANG, S.Q. (2007) Cloning, expression and bioactivity of duck BAFF. Molecular Immunology 44: 1471-1476.CrossRefGoogle ScholarPubMed
GUTTENBACH, M. NANDA, I., , FEICHTINGER, W., MASABANDA, J.S., GRIFFIN, D.K. and SCHMID, M. (2003) Comparative chromosome painting of chicken autosomal paints 1-9 in nine different bird species. Cytogenetics Genome Research 103: 173-184.CrossRefGoogle ScholarPubMed
HILLIER, L.W., MILLER, W., BIRNEY, E., WARREN, W. and HARDISON, R.C. (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695-716.Google Scholar
HUANG, Y.H., HALEY, C.S., HU, S.Q., HAO, J.P., WU, C.X. and LI, N. (2007a) Detection of quantitative trait loci for body weight and conformation traits in Beijing ducks. Animal Genetics 38: 525-526.CrossRefGoogle ScholarPubMed
HUANG, Y.H., HALEY, C.S., WU, F., HU, S.Q., HAO, J.P., WU, C. and LI, N. (2007b) Genetic mapping of quantitative trait loci affecting carcass and meat quality trait in Beijing duck(Anas platyrhynchos). Animal Genetics 38: 114-119.CrossRefGoogle Scholar
HUANG, Y., TU, J., CHENG, X., TANG, B., HU, X., LIU, Z., FENG. J. LOU, Y., LIN, L. XU, K., , ZHAO, Y. and LI, N. (2005) Characterization of 35 novel microsatellite DNA markers from the duck (Anas platyrhynchos) genome and cross-amplification in other birds. Genetics Selection Evolution 37: 455-472.CrossRefGoogle ScholarPubMed
HUANG, Y.H., ZHAO, Y.H., HALEY, C.S., HU, S.Q., HAO, J.P., WU, C. and LI, N. (2006) A genetic and Cytogenetic Map for the Duck (Anas platyrhynchos). Genetics 173: 287-296.CrossRefGoogle ScholarPubMed
HULSE-POST, D. J., STURM-RAMIREZ, K. M., HUMBERD, J., SERLER, P., GOVORKOVA, E. A., KRAUSS, S., SCHOLTISSEK, C., PUTHAVATHANA, P. BURANATHAI, C., , NGUYEN, T.D., LONG, H.T., NAIPOSPOS, T.S.P., CHEN, H., ELLIS, T.M., GUAN, Y., PEIRIS, S.M. and WEBSTER, R.G. (2005) Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia. Proceedings of the National Academy of Science of the United State of America 102: 10682-10687.CrossRefGoogle Scholar
IHARA, N., TAKASUGA, A., MIZOSHITA, K., TAKEDA, H., SUGIMOTO, M., MIZOGUCHI, Y., HIRANO, T., ITOH, T., WATANABE, T., REED, K.M., SNELLING, W.M., KAPPES, S.M., BEATTIE, C.W., BENNETT, G.L. and SUGIMOTO, Y. (2004) A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Research 14: 1987-1998.CrossRefGoogle ScholarPubMed
JEON, J.T., PARK, E.W., JEON, H.J., KIM, T.H., LEE, K.T. and CHEONG I.C., (2003) A large-insert porcine library with sevenfold genome coverage: a tool for positional cloning of candidate genes for major quantitative traits. Molecules and Cells 16: 113-116.CrossRefGoogle ScholarPubMed
KEELER, J.C.L., BLISS, T.B., LAVRIC, M. and MAUGHAN, M.N. (2007) A functional genomics approach to the study of avian innate immunity. Cytogenetics Genome Research 117: 139-145.CrossRefGoogle Scholar
LARSON, G., DOBNEY, K., ALBARELLA, U., FANG, M., MATISOO-SMITH, E., ROBINS, J., LOWDEN, S., FINLAYSON, H., BRAND, T., WILLERSLEV, E., ROWLEY-CONWY, P., ANDERSSON, L. and COOPER, A. (2005) Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307: 1618-1621.CrossRefGoogle ScholarPubMed
LIN, Y. (2007) Physical mapping and comparative genomic study of the functional genes on chromosome 1 in duck. Master D. Thesis, China Agricultural University.CrossRefGoogle Scholar
LIU, H.B., LIU, K., WANG, J.F. and MA, R.L. (2006a) A BAC clone-based phyiscal map of ovine major histocompatibility complex. Genomics 88: 88-95.CrossRefGoogle Scholar
LIU, W., LIU, Z., HU, X., ZHANG, Y., YUAN, J., ZHAO. R., , LI, Z., XU, W., GAO, Y., DENG, X. and LI, N. (2003) Construction and characterization of a novel 13.34-fold chicken bacterial artificial chromosome library. Animal Biotechnology 14: 145-153.CrossRefGoogle Scholar
LIU, W., HOU, Z.C., HUANG, Y.H., XU, G.Y., QU, L.J., YAO, J.F., LI, N. and YANG, N. (2006b) Genetic relationship among Chinese domestic ducks as revealed by microsatellite analysis. Proceeding of the 30th International Conference on Animal Genetics.Google Scholar
MAAK, S., NEUMANN, K., LENGERKEN, G. VON and GATTERMANN, R. (2000) First seven microsatellites developed for the Peking duck (Anas platyrhynchos). Animal Genetics 31: 233.Google ScholarPubMed
MAAK, S., WIMMERS, K., WEIGEND, S. and NEUMANN, K. (2003) Isolation and characterization of 18 microsatellites in the Peking duck (Anas platyrhynchos) and their application in other waterfowl species. Molecular Ecology Notes 3: 224-227.CrossRefGoogle Scholar
MACDONALD, M.R.W., VENIAMIN, S.M., GUO, X., XIA, J., MOON, D.A and MAGOR, K.E. (2007) Genomics of antiviral defenses in the duck, a natural host of influenza and hepatitis B viruses. Cytogenetics Genome Research 117: 195-206.CrossRefGoogle Scholar
MADDOX, J.F., DAVIES, K.P., CRAWFORD, A.M., HULME, D.J., VAIMAN, D., CRIBIU, F.P., FREKING, B.A., BEH, K.J., COCKETT, N.E., KANG, N., RIFFKIN, C.D., DRINKWATER, R., MOORE, S.S., DODDS, K.G., LUMSDEN, J.M., VAN STIJIN, T.C., PHUA, S.H., ADELSON, D.L., BURKIN, H.R., BROOM, J.E., BUITKAMP, J., CAMBRIDGE, L., CUSHWA, W.T., GERARD, E., GALLOWAY, S.M., HARRISON, B., HARKEN, R.J., HIENDLEDER, S., HENRY, H.M., MEDRONA, J.F., PATERSON, K.A., SHEIBLER, L., STONE, R.T. and VAN HEST, B. (2001) An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Research 11: 1275-1289.CrossRefGoogle ScholarPubMed
MEUWISSEN, T.H.E., HAYES, B.J. and GODDARD, M.E. (2001) Prediction of total genetic value using genome wide dense marker maps. Genetics 157: 1819-1829.CrossRefGoogle ScholarPubMed
MOON, D.A. and MAGOR, K.E. (2004) Construction and characterization of a fosmid library for comparative analysis of the duck genome. Animal Genetics 35: 417-418.CrossRefGoogle ScholarPubMed
PAULUS, K.B. and TIEDEMANN, R. (2003) Ten polymorphic autosomal microsatellite loci for Eider duck Somaterica mollissima and their cross-species applicability among waterfowl species (Anatidae). Molecular Ecology Notes 3: 250-252.CrossRefGoogle Scholar
PEREIRA, S. and BAKER, A.J. (2006) A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. Molecular Phylogenetics Evolution 38: 499-509.CrossRefGoogle ScholarPubMed
PETER, C., BRUFORD, M., PEREZ, T., DALAMITRA, S., HEWITT, G. and ERHARD, G. (2007) Genetic diversity and subvision of 57 European and Middle-Eastern sheep breeds. Animal Genetics 38: 37-44.CrossRefGoogle Scholar
ROMANOV, M.N. and WEIGEND, S. (2001) Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers. Poultry Science 80: 1057-1063.CrossRefGoogle ScholarPubMed
SCHULTZ, U. and CHISARI, F.V. (1999) Recombinant duck interferon Gamma inhibits duck hepatitis B virus replication in primary hepatocytes. Journal of Virology 73: 3162-3168.CrossRefGoogle ScholarPubMed
STAI, S.M. and HUGHES, C.R. (2003) Characterization of microsatellite loci in wild and domestic Muscovy ducks (Cairina moschata). Animal Genetics 34: 387-389.CrossRefGoogle ScholarPubMed
STEPHENS, J.L., BROWN, S.E., LAPITAN, N.L. and KNUDSON, D.L. (2004) Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47: 179-189.CrossRefGoogle ScholarPubMed
TIERSCH, T.R. and WACHTEL, S.S. (1991) On the evolution of genome size in birds. The Journal of Heredity 82: 363-368.CrossRefGoogle Scholar
VAIMAN, D., SCHIBLER, L., BOURGEOIS, F., OUSTRY, A., AMIGUESS, Y. and CRIBIU, F.P. (1996) A genetic linkage map of the male goat genome. Genetics 144: 279-305.CrossRefGoogle ScholarPubMed
WEBSTER, R.G. (2002) The importance of animal influenza for human disease. Vaccine 20(Suppl.2): S16-20.CrossRefGoogle ScholarPubMed
XIA, J.G., RADFORD, C., GUO, X.X. and MAGOR, K.E. (2007) Immune gene discovery by expressed sequence tag analysis of spleen in the duck (Anas platyrhynchos). Developmental and Comparative Immunology 31: 272-285.CrossRefGoogle ScholarPubMed
YUAN, X. (2007) Construction of a duck bacterial artificial chromosome library and physical mapping of linkage group by FISH. Ph. D. Thesis, China Agricultural University.Google Scholar
YUAN, X., ZHANG, M., RUAN, W., SONG, C., REN, L., GUO, Y., HU, X. and LI, N. (2006) Construction and characterization of a duck bacterial artificial chromosome library. Animal Genetics 37: 599.CrossRefGoogle ScholarPubMed
ZHOU, J.Y., WANG, J.Y., CHEN, J.G., WU, J.G., GONG, H., TENG, Q.Y., GUO, J.Q. and SHEN, H.G. (2005) Cloning, in vitro expression and bioactivity of duck interleukin-2. Molecular Immunology 42: 589-598.CrossRefGoogle ScholarPubMed
ZHU, B., SMITH, J.A., TRACEY, S.M., KONFORTOV, B.A., WELZEL, K., SCHALKWYK, L.C., LEHRACH, H., KOLLERS, S., MASABANDA, J., BUITKAMP, J., FRIES, R., WILLIAMS, J.L. and MILLER, J.R. (1999) A 5× genome coverage bovine BAC library: production, characterization, and distribution. Mammal Genome 10: 706-709.CrossRefGoogle ScholarPubMed