Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T19:13:18.962Z Has data issue: false hasContentIssue false

Functional genomics in chicken (Gallus gallus) - status and implications in poultry

Published online by Cambridge University Press:  27 February 2014

S. DHANASEKARAN
Affiliation:
Project Directorate on Poultry (ICAR), Rajendranagar, Hyderabad, Andhra Pradesh, India
T.K. BHATTACHARYA*
Affiliation:
Project Directorate on Poultry (ICAR), Rajendranagar, Hyderabad, Andhra Pradesh, India
R.N. CHATTERJEE
Affiliation:
Project Directorate on Poultry (ICAR), Rajendranagar, Hyderabad, Andhra Pradesh, India
CHANDAN PASWAN
Affiliation:
Project Directorate on Poultry (ICAR), Rajendranagar, Hyderabad, Andhra Pradesh, India
K. DYUSHANTH
Affiliation:
Project Directorate on Poultry (ICAR), Rajendranagar, Hyderabad, Andhra Pradesh, India
*
Corresponding author: [email protected]
Get access

Abstract

Chickens (Gallus gallus) were the first avian species selected for whole genome sequencing because of their economic value, use as a food source, livelihood security and research importance. Any living organism contains a galaxy of genes which express all the phenotypes or characters by encoding proteins and peptides, and playing regulatory roles in the biological system. Functional genomics in turn, is a multidisciplinary approach to identify and demonstrate the functional roles of genes and other regulatory molecules such as microRNA and CpG methylation in biological pathways. In the last two decades, the chicken genome database has made significant advancements in accruing large amounts of genomic information through employing advanced bio-informatic tools. Several techniques such as cDNA microarray, serial analysis of gene expression, massively parallel signature sequencing, cDNA subtractive hybridisation and next generation sequencing have been utilised to investigate the genome-wide expression profile instead of revealing expression pattern of one or a few genes in various avian species. Expressed sequence tag or cDNA sequences are the key factors for identification of novel genes and understanding the complex molecular cascades of ontology. A large-scale cDNA library has been constructed from embryonic and adult tissues and consequently identified the presence of about 19,000 functional genes in chickens. The micro RNAs play crucial role in gene expression and to date, approximately 496 micro RNAs have been characterised. The non-coding RNA alters gene expression involved in cellular process, by modulating the chromatin architecture, transcription, RNA splicing, editing, translation and turnover. Functional genomics studies have been extensively used to identify genes associated with several production traits, immuno-genetic mechanism, host-pathogen interaction, pathogen biology etc. Nutrigenomics have determined the genomic mechanism involved in feed utilisation, metabolism and cholesterol synthesis etc., which ultimately reveal potential applications for improving the nutritional efficiency of birds. This review discusses the tools and utility of functional genomics approaches in chicken.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ADAMS, S.C., XING, Z., LI, J. and CARDONA, C.J. (2009) Immune-related gene expression in response to H11N9 low pathogenic avian influenza virus infection in chicken and Pekin duck peripheral blood mononuclear cells. Molecular Immunology 46: 1744-1749.CrossRefGoogle ScholarPubMed
AL-AZEMI, A., BAHL, J., AL-ZENKI, S., AL-SHAYJI, Y., AL-AMAD, S., CHEN, H., GUAN, Y., MALIK PEIRIS, J.S. and SMITH, G.J.D. (2008) Avian influenza A virus (H5N1) outbreaks, Kuwait, 2007. Emerging Infectious Diseases 14: 958-961.CrossRefGoogle ScholarPubMed
ARAL, Y., YALCIN, C., CEVGER, Y., SIPAHI, C. and SARIOZKAN, S. (2010) Production, modeling, and education: financial effects of the highly pathogenic avian influenza outbreaks on the Turkish broiler producers. Poultry Science 89: 1085-1088.Google Scholar
ASK, B., WAAIJ, E.H., STEGEMAN, J.A. and VAN ARENDONK, J.A. (2006) Genetic variation among broiler genotypes in susceptibility to colibacillosis. Poultry Science 85: 415-421.Google Scholar
BANNISTER, S.C., SMITH, C.A., ROESZLER, K.N., DORAN, T.J., SINCLAIR, A.H. and TIZARD, M.L. (2011) Manipulation of estrogen synthesis alters mir202 expression in embryonic chicken gonads. Biology of reproduction 85: 22-30.Google Scholar
BARTEL, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.CrossRefGoogle ScholarPubMed
BHATTACHARYA, T.K., CHATTERJEE, R.N., SHARMA, R.P., NIRANJAN, M., RAJKUMAR, U. and REDDY, B.L.N. (2011a) Polymorphism in the prolactin promoter and its association with growth traits in chickens. Biochemical Genetics 49: 385-394.Google Scholar
BHATTACHARYA, T.K., CHATTERJEE, R.N., SHARMA, R.P., NIRANJAN, M. and RAJKUMAR, U. (2011b) Associations between novel polymorphisms at the 5'UTR region of the prolactin gene and egg production and quality in chickens. Theriogenology 75: 655-661.CrossRefGoogle Scholar
BISWAS, P.K., CHRISTENSEN, J.P., AHMED, S.S., BARUA, H., DAS, A., RAHMAN, M.H., GIASUDDIN, M., HANNAN, A.S., HABIB, M.A., AHAD, A., RAHMAN, A.S., FARUQUE, R. and DEBNATH, N.C. (2008) Avian influenza outbreaks in chickens, Bangladesh. Emerging Infectious Diseases 14: 1909-1912.Google Scholar
BOARDMAN, P.E., SANZ-EZQUERRO, J., OVERTON, I.M., BURT, D.W., BOSCH, E., FONG, W.T., TICKLE, C., BROWN, W.R., WILSON, S.A. and HUBBARD, S.J. (2002) A comprehensive collection of chicken cDNAs. Current Biology 12: 1965-1969.Google Scholar
BROWN, I.H. (2010) Summary of avian influenza activity in Europe, Asia and Africa 2006-2009. Avian Diseases 54: 187-193.Google Scholar
CALDWELL, R., KIERZEK, A., ARAKAWA, H., BEZZUBOV, Y., ZAIM, J. FIEDLER, P., KUTTER, S., BLAGODATSKI, A., KOSTAVSKA, D., KOTER, M., CARNICI, P., HAYASHIZAKI, Y. and BUERSTEDDE, J.M. (2004) Full-length cDNAs from bursal lymphocytes to facilitate gene function analysis. Genome Biology 6: R6.Google Scholar
CAVERO, D., SCHMUTZ, M., PHILIPP, H.C. and PREISINGER, R. (2009) Breeding to reduce susceptibility to Escherichia coli in layers. Poultry Science 88: 2063-2068.Google Scholar
CHIANG, H.I., SWAGGERTY, C.L., KOGUT, M.H., DOWD, S.E., LI, X., PEVZNER, I.Y. and ZHOU, H. (2008) Gene expression profiling in chicken heterophils with Salmonella enteritidis stimulation using a chicken 44 K Agilent microarray. BMC Genomics 9: 526.Google Scholar
CHODROFF, R.A., GOODSTADT, L., SIREY, T.M., OLIVER, P.L., DAVIES, K.E., GREEN, E.D., MOLNÁR, Z. and PONTING, C.P. (2010) Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biology 11: R72.Google Scholar
CIRACI, C., TUGGLE, C.K., WANNEMUEHLER, M.J., NETTLETON, D. and LAMONT, S.J. (2010) Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin. BMC Genomics 11: 545 doi: 10.1186/1471-2164-11-545.Google Scholar
COBLE, D.J., REDMOND, S.B., HALE, B. and LAMONT, S.J. (2011) Distinct lines of chickens express different splenic cytokine profiles in response to Salmonella Enteritidis challenge. Poultry Science 90: 1659-1663.Google Scholar
CROWLEY, T.M., HARING, V.R., BURGGRAAF, S. and MOORE, R.J. (2003) Application of chicken microarrays for gene expression analysis in other avian species. BMC Genomics 10: S3.Google Scholar
CUI, J.X., DU, H.L., LIANG, Y., DENG, X.M., LI, N. and ZHANG, X.Q. (2006) Association of polymorphisms in the promoter region of chicken prolactin with egg production. Poultry Science 85: 26-31.Google Scholar
CUTTING, A.D., BANNISTER, S.C., DORAN, T.J., SINCLAIR, A.H., TIZARD, M.V. and SMITH, C.A. (2012) The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosome Research 20: 201-213.Google Scholar
DARNELL, D.K., KAUR, S., STANISLAW, S., KONIECZKA, J.H., YATSKIEVYCH, T.A. and ANTIN, P.B. (2006) Micro RNA expression during chick embryo development. Developmental Dynamics 235: 3156-3165.Google Scholar
DÈSERT, C., DUCLOS, M., BLAVY, P., LECERF, F., MOREEWS, F., KLOPP, C., AUBRY, M., HERAULT, F., LEROY, P., BERRI, C., DOUAIRE, M., DIOT, C. and LAGARRIGUE, S. (2008) Transcriptome profiling of the feeding-to-fasting transition in chicken liver. BMC Genomics 9: 611.CrossRefGoogle ScholarPubMed
DING, S.T., KO, Y.H., OU, B.R., WANG, P.H., CHEN, C.L., HUANG, M.C., LEE, Y.P., LIN, E.C., CHEN, C.F., LIN, H.W. and CHENG, W.T.K. (2008) The expression of genes related to egg production in the liver of Taiwan country chickens. Asian - Australasian Journal of Animal Sciences 21: 19-24.CrossRefGoogle Scholar
DINGER, M.E., AMARAL, P.P., MERCER, T.R. and MATTICK, J.S. (2009) Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. Briefings in Functional Genomics 8: 407-423.Google Scholar
DUERKOP, B.A., VAISHNAVA, S. and HOOPER, L.V. (2009) Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31: 368-376.Google Scholar
DUNN, I.C., WILSON, P.W., LU, Z., BAIN, M.M., CROSSAN, C.L., TALBOT, R.T. and WADDINGTON, D. (2009) New hypotheses on the function of the avian shell gland derived from microarray analysis comparing tissue from juvenile and sexually mature hens. General and comparative endocrinology 163: 225-232.Google Scholar
GLAZOV, E.A., COTTEE, P.A., BARRIS, W.C., MOORE, R.J., DALRYMPLE, B.P. and TIZARD, M.L. (2008) A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Research 18: 957-964.Google Scholar
HANNAH, J.F., WILSON, J.L., COX, N.A., RICHARDSON, L.J., CASON, J.A., BOURASSA, D.V. and BUHR, R.J. (2011) Horizontal transmission of Salmonella and Campylobacter among caged and cage-free laying hens. Avian Disease 55: 580-587.CrossRefGoogle ScholarPubMed
HAWKINS, R.D., HELMS, C.A., WINSTON, J.B., WARCHOL, M.E. and LOVETT, M. (2006) Applying genomics to the avian inner ear: development of subtractive cDNA resources for exploring sensory function and hair cell regeneration. Genomics 87: 801-808.CrossRefGoogle Scholar
HICKS, J.A., TEMBHURNE, P. and LIU, H.C. (2008) Micro RNA expression in chicken embryos. Poultry Science 87: 2335-2343.Google Scholar
HIGGINS, S.E., ELLESTAD, L.E., TRAKOOLJUL, N., MCCARTHY, F., SALIBA, J., COGBURN, L.A. and PORTER, T.E. (2010) Transcriptional and pathway analysis in the hypothalamus of newly hatched chicks during fasting and delayed feeding. BMC Genomics 11: 162.Google Scholar
HINCKE, M.T., NYS, Y. and GAUTRON, J. (2010) . The role of matrix proteins in eggshell formation. Journal of Poultry Science 47: 208-219.Google Scholar
HOOK, V., FUNKELSTEIN, L., LU, D., BARK, S., WEGRZYN, J. and HWANG, S.R. (2008) Proteases for processing pro neuropeptides into peptide neurotransmitters and hormones. Annual review of pharmacology and toxicology 48: 393-423.Google Scholar
HOWARD, Z.R., O'BRYAN, C.A., CRANDALL, P.G. and RICKE, S.C. (2012) Salmonella Enteritidis in shell eggs: Current issues and prospects for control. Food Research International 45: 755-764.Google Scholar
HUBBARD, S.J., GRAFHAM, D.V., BEATTIE, K.J., OVERTON, I.M., MCLAREN, S.R., CRONING, M.D., BOARDMAN, P.E., BONFIELD, J.K., BURNSIDE, J., DAVIES, R.M., FARRELL, E.R., FRANCIS, M.D., GRIFFITHS-JONES, S., HUMPHRAY, S.J., HYLAND, C., SCOTT, C.E., TANG, H., TAYLOR, R.G., TICKLE, C., BROWN, W.R., BIRNEY, E., ROGERS, J. and WILSON, S.A. (2004) Transcriptome analysis for the chicken based on 19,626 finished cDNA sequences and 485,337 expressed sequence tags. Genome Research 15: 174-183.CrossRefGoogle Scholar
INTERNATIONAL CHICKEN GENOME SEQUENCING CONSORTIUM (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695-716.Google Scholar
KA, S., FRANK, W., ALBERT, D., MICHAEL, D., SVANTE, P., SIEGEL, P.B., ANDERSSON, L. and HALLBÖÖK, F. (2011) Differentially expressed genes in hypothalamus in relation to genomic regions under selection in two chicken lines resulting from divergent selection for high or low body weight. Neurogenetics 12: 211-221.Google Scholar
KERSTENS, H.H., CROOIJMANS, R.P., DIBBITS, B.W., VEREIJKEN, A., OKIMOTO, R. and GROENEN, M.A. (2011) Structural variation in the chicken genome identified by paired-end next-generation DNA sequencing of reduced representation libraries. BMC Genomics 12: 94.Google Scholar
LARKINA, T.A., SAZANOVA, A.L., FOMICHEV, K.A., BARKOVA, O.Y., SAZANOV, A.A., MALEWSKI, T. And JASZCZAK and K. (2011) Expression profiling of candidate genes for abdominal fat mass in domestic chicken (Gallus gallus)., Russian Journal of Genetics 8: 1012-1015.Google Scholar
LI, T., WANG, S., WU, R., ZHOU, X., ZHU, D. and ZHANG, Y. (2012) Identification of long non-protein coding RNAs in chicken skeletal muscle using next generation sequencing. Genomics 99: 292-298.CrossRefGoogle ScholarPubMed
LI, X., CHIANG, H.I., ZHU, J., DOWD, S.E. and ZHOU, H. (2008) Characterisation of a newly developed chicken 44 K Agilent microarray. BMC Genomics 9: 60.Google Scholar
LI, X., SWAGGERTY, C.L., KOGUT, M.H., CHIANG, H.I., WANG, Y., GENOVESE, K.J., HE, H. and ZHOU, H. (2010) Gene expression profiling of the local cecal response of genetic chicken lines that differ in their susceptibility to Campylobacter jejuni colonisation. PLoS One 5: 1182.Google Scholar
LIN, H. (2007) piRNAs in the germ line. Science 316: 397.Google Scholar
MOULIN, H.R., LINIGER, M., PYTHON, S., GUZYLACK-PIRIOU, L., OCAÑA-MACCHI, M., RUGGLI, N. and SUMMERFIELD, A. (2011) High interferon type I responses in the lung, plasma and spleen during highly pathogenic H5N1 infection of chicken. Veterinary Research 11: 42-46.Google Scholar
MÜLLER, W., BÖHLAND, C. and METHNER, U. (2011) Detection and genotypic differentiation of Campylobacter jejuni and Campylobacter coli strains from laying hens by multiplex PCR and fla typing. Research in Veterinary Science 3: 48-52.Google Scholar
NANG, N.T, LEE, J.S., SONG, B.M., KANG, Y.M., KIM, H.S. and SEO, S.H. (2011) Induction of inflammatory cytokines and toll-like receptors in chickens infected with avian H9N2 influenza virus. Veterinary Research 18: 42-46.Google Scholar
NEI, M., SUZUKI, Y. and NOZAWA, M. (2010) The neutral theory of molecular evolution in the genomic era. Annual Review of Genomics and Human Genetics 11: 265-289.Google Scholar
NÓGRÁDY, N., KARDOS, G., BISTYÁK, A., TURCSÁNYI, I., MÉSZÁROS, J., GALÁNTAI, Z., JUHÁSZ, A., SAMU, P., KASZANYITZKY, J.E., PÁSZTI, J. and KISS, I. (2008) Prevalence and characterisation of Salmonella infantis isolates originating from different points of the broiler chicken-human food chain in Hungary. International Journal of Food Microbiology 127: 162-167.Google Scholar
PENSKI, N., HÄRTLE, S., RUBBENSTROTH, D., KROHMANN, C., RUGGLI, N., SCHUSSER, B., PFANN, M., REUTER, A., GOHRBANDT, S., HUNDT, J., VEITS, J., BREITHAUPT, A., KOCHS, G., STECH, J., SUMMERFIELD, A., VAHLENKAMP, T., KASPERS, B. and STAEHELI, P. (2011) Highly pathogenic avian influenza viruses do not inhibit interferon synthesis in infected chickens but can override the interferon-induced antiviral state. Journal of Virology 85: 7730-7741.Google Scholar
POST, J., BURT, D.W., CORNELISSEN, J.B., BROKS, V., VAN, Z.D., PEETERS, B. and REBEL, J.M. (2012) Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus. Virology Journal 9: 61.Google Scholar
RATHJEN, T., PAIS, H., SWEETMAN, D., MOULTON, V., MUNSTERBERG, A. and DALMAY, T. (2009) High throughput sequencing of micro RNAs in chicken somites . FEBS Letters 583: 1422-1426.Google Scholar
REBEL, J.M, PEETERS, B., FIJTEN, H., POST, J., CORNELISSEN, J. and VERVELDE, L. (2011) Highly pathogenic or low pathogenic avian influenza virus subtype H7N1 infection in chicken lungs: Small differences in general acute responses. Veterinary Research 42: 10.Google Scholar
REEMERS, S.S., LEENEN, D., KOERKAMP, M.J., HAARLEM, D., HAAR, P., EDEN, W. and VERVELDE, L. (2010) Early host responses to avian influenza A virus are prolonged and enhanced at transcriptional level depending on maturation of the immune system. Molecular Immunology 47: 1675-1685.Google Scholar
RICHARDS, M.P., PROSZKOWIEC-WEGLARZ, M., ROSEBROUGH, R.W., MCMURTRY, J.P. and ANGEL, R. (2010) Effects of early neonatal development and delayed feeding immediately post-hatch on the hepatic lipogenic program in broiler chicks. Comparative biochemistry and physiology b-biochemistry & molecular biology 157: 374-388.Google Scholar
SARMENTO, L., CLAUDIO, L.A., ESTEVEZ, C., WASILENKO, J. and PANTIN-JACKWOOD, M. (2008) Differential host gene expression in cells infected with highly pathogenic H5N1 avian influenza viruses. Veterinary Immunology and Immunopathology 125: 291-302.Google Scholar
SCHMID, M., NANDA, I., HOEHN, H. SCHARTL, M., HAAF, T., BUERSTEDDE, J.M., ARAKAWA, H., CALDWELL, R.B., WEIGEND, S., BURT, D.W., SMITH, J., GRIFFIN, D.K., MASABANDA, J.S., GROENEN, M.A., CROOIJMANS, R.P., VIGNAL, A., FILLON, V., MORISSON, M., PITEL, F., VIGNOLES, M., GARRIGUES, A., GELLIN, J., RODIONOV, A.V., GALKINA, S.A., LUKINA, N.A., BEN-ARI, G., BLUM, S., HILLEL, J., TWITO, T., LAVI, U., DAVID, L., FELDMAN, M.W., DELANY, M.E., CONLEY, C.A., FOWLER, V.M., HEDGES, S.B., GODBOUT, R., KATYAL, S., SMITH, C., HUDSON, Q., SINCLAIR, A. and MIZUNO, S. (2005) Second report on chicken genes and chromosomes 2005. Cytogeneics and Genome Research 109: 415-479.Google Scholar
SCHOKKER, D., DE KONING, D.J., REBEL, J.M. and SMITS, M.A. (2011) Shift in chicken intestinal gene association networks after infection with Salmonella. Comparative Biochemistry and Physiology 6: 339-347.Google Scholar
SHEN, X., ZENG, H., XIE, L., HE, J., LI, J., XIE, X., LUO, C., XU, H., ZHOU, M., NIE, Q. and ZHANG, X. (2012) The GTPase activating Rap/RanGAP domain-like 1 gene is associated with chicken reproductive traits. PLoS One 7: e33851.Google Scholar
TSAI, H.J., CHIU, C.H., WANG, C.L. and CHOU, C.H. (2010) A time-course study of gene responses of chicken granulosa cells to Salmonella Enteritidis infection. Veterinary Microbiology 144: 325-333.Google Scholar
WANG, H.B., LI, H., WANG, Q.G., ZHANG, X.Y., WANG, S.Z., WANG, Y.X. and WANG, X.P. (2007) Profiling of chicken adipose tissue gene expression by genome array. BMC Genomics 8: 193.Google Scholar
WANG, P.H., KO, Y.H., CHIN, H.J., HSU, C., DING, S.T. and CHEN, C.Y. (2009a) The effect of feed restriction on expression of hepatic lipogenic genes in broiler chickens and the function of SREBP1. Comparative biochemistry and physiology b-biochemistry & molecular biology 153: 327-331.Google Scholar
WANG, Y., BRAHMAKSHATRIYA, V., ZHU, H., LUPIANI, B., REDDY, S.M., YOON, B.J., GUNARATNE, P.H., KIM, J.H., CHEN, R., WANG, J. and ZHOU, H. (2009b) Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics 10: 512Google Scholar
WANG, H.B., WANG, Q.G., ZHANG, X.Y., GU, X.F., WANG, N., WU, S.B. and LI, H. (2010) Microarray analysis of genes differentially expressed in the liver of lean and fat chickens. Animal 4: 513-522.Google Scholar
WATANABE, C., UCHIDA, Y., ITO, H., ITO, T. and SAITO, T. (2011) Host immune-related gene responses against highly pathogenic avian influenza virus infection in vitro differ among chicken cell lines established from different organs. Veterinary Immunology and Immunopathology 144: 187-199.Google Scholar
XING, Z., CARDONA, C.J., LI, J., DAO, N., TRAN, T. and ANDRADA, J. (2008) Modulation of the immune responses in chickens by low-pathogenicity avian influenza virus H9N2. Journal of General Virology 89: 1288-1299.Google Scholar
YANG, K.T., LIN, C.Y., LIOU, J.S., FAN, Y.H., CHIOU, S.H., HUANG, C.W., WU, C.P., LIN, E.C., CHEN, C.F., LEE, Y.P., LEE, W.C., DING, S.T., CHENG, W.T. and HUANG, M.C. (2007) Differentially expressed transcripts in shell glands from low and high egg production strains of chickens using cDNA microarrays. Animal reproduction science 101: 113-124.Google Scholar
YANG, H., WANG, X., LIU, X., LIU, X., LI, L., HU, X. and LI, N. (2012) Cloning and expression analysis of piRNA-like RNAs: adult testis-specific small RNAs in chicken. Molecular and cellular biochemistry 360: 347-352.CrossRefGoogle ScholarPubMed
ZHENG, Q., ZHANG, Y., CHEN, Y., YANG, N., WANG, X.J. and ZHU, D. (2009) Systematic identification of genes involved in divergent skeletal muscle growth rates of broiler and layer chickens. BMC Genomics 10: 87 doi:10.1186/1471-2164-10-87.Google Scholar
ZHANG, W., LI, H., CHENG, G., HU, S., LI, Z. and BI, D. (2008) Avian influenza virus infection induces differential expression of genes in chicken kidney. Research in Veterinary Science 84: 374-381.Google Scholar
ZHANG, Y., WANG, J., HUANG, S., ZHU, X., LIU, J., YANG, N., SONG, D., WU, R., DENG, W., SKOGERBØ, G., WANG, X.J., CHEN, R. and ZHU, D. (2009) Systematic identification and characterisation of chicken (Gallus gallus) ncRNAs, Nucleic Acids Research 37: 6562-6574.Google Scholar
ZHAO, G., ZHENG, M., CHEN, J., WEN, J., WU, C., LI, W., LIU, L. and ZHANG, Y. (2009) Differentially expressed genes in a flock of Chinese local breed chickens infected with a subgroup J avian leukosis virus using suppression subtractive hybridisation, Genetics and Molecular Biology 33: 44-50.Google Scholar