Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T23:15:04.212Z Has data issue: false hasContentIssue false

Design of non-destructive methodologies to assess skeletal integrity in laying hens

Published online by Cambridge University Press:  18 September 2007

M.A. Martínez-Cummer
Affiliation:
Department of Animal & Poultry Science, University of Guelph, Guelph ON, Canada
S. Leeson*
Affiliation:
Department of Animal & Poultry Science, University of Guelph, Guelph ON, Canada
*
*Corresponding author: [email protected]
Get access

Abstract

Conventional methods of assessing bone integrity of layers have involved destructive testing on dissected samples. Bone ash, calcium and phosphorus levels give an indication of mineral content while breaking strength is at best a relative measure subject to numerous potential errors in methodology. More recently non-destructive methodologies have been accepted in human medicine, the most promising being quantitative ultrasonography (QUS) and axial x-ray micro-computed tomography (Micro CT). QUS relies on capturing sound waves that have travelled through the bone, where density will influence time between emitting and capture of the signal. In our preliminary studies, the humerus is the most appropriate bone for such studies since there is a minimum of overlying tissue. Micro CT relies on 720 images, taken at 0.5° angles around a sample, and then software allows rebuilding of a 3-D image. Micro CT also provides quantitation of density in selected areas on the image. Most Micro CT scanners currently necessitate isolated bone samples, although second generation machines will have the capacity to scan sedated animals such as chickens and small mammals.

Type
Reviews
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abendschein, W.F. and Hyatt, G.W. (1970) Ultrasonics and selected physical properties of bone. Clinical Orthopedics 69: 294301.CrossRefGoogle ScholarPubMed
Abendschein, W.F. and Hyatt, G.W. (1972) Ultrasonics and the physical properties of healing bone. Journal of Trauma 12: 297301.CrossRefGoogle ScholarPubMed
Akpe, M.P., Waibel, P.E., Larntz, K., Metz, A.L., Noll, S.L. and Walser, M.M. (1987) Phosphorus availability bioassay using bone ash and bone densitometry as response criteria. Poultry Science 66: 713720.CrossRefGoogle ScholarPubMed
Ashman, R.B., Cowin, S.C., Van Buskirk, W.C. and Rice, J.C. (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. Journal of Biomechanics 17: 349361.CrossRefGoogle ScholarPubMed
Baran, D.T., Faulkner, K.G. and Genant, H.K. (1997) Diagnosis and measurement of osteoporosis: Guidelines for the utilization of bone densitometry. Calcified Tissue International 61: 433440.Google Scholar
Barkmann, R., Kantorovich, E., Singal, C., Hans, D., Genant, H.K., Heller, M. and Glüer, C.C. (2000) A new method for quantitative ultrasound measurement at multiple skeletal sites. Journal of Clinical Densitometry 3: 17.CrossRefGoogle ScholarPubMed
Brown, S.A. and Mayor, M.B. (1976) Ultrasonic assessment of early callus formation. Biomedical Engineering 11: 124127.Google ScholarPubMed
Brunton, J.A., Bayley, H.S. and Atkinson, S.A. (1993) Validation and application of dual energy x-ray absorptiometry to measure bone mass and body composition in small infants. American Journal of Clinical Nutrition 58: 839845.CrossRefGoogle ScholarPubMed
Buchman, S.R. (1998) Use of micro-computed tomography scanning as a new technique for the evaluation of membranous bone. Journal of Craniofacial Surgery 9: 4854.Google Scholar
Carstanjen, B., Lepage, O.M. and Langlois, P. (1999) Quantitative ultrasound: a non-invasive method for bone assessment in Thoroughbred horses. Journal of Equine Veterinary Science 19: 556.Google Scholar
Crenshaw, T.D., Peo, E.R. JR., Lewis, A.J. and Moser, B.D. (1981) Bone strength as a trait for assessing mineralization in swine: A critical review of techniques involved. Journal of Animal Science 53: 827838.CrossRefGoogle Scholar
Currey, J. (1964) Three analogies to explain the mechanical properties of bone. Biorheology 2: 110.Google Scholar
Dedrick, D.K. (1993) A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up to 54 months. Arthritis and Rheumatology 36: 14601467CrossRefGoogle Scholar
Elaroussi, M.A., Forte, L.R., Eber, S.L. and Biellier, H.V. (1994) Calcium homeostasis in the laying hen. 1. Age and dietary calcium effects. Poultry Science 73: 15811589.CrossRefGoogle ScholarPubMed
Feldkamp, L.A., Goldstein, S.A., Parfitt, A.M.Jesion, G. and Kleerekoper, M. (1989) The direct examination of three dimensional bone architecture in vitro by computed tomography. Journal of Bone Mineral Research 4:311.Google Scholar
Fleming, R.H., Korver, D., McCormack, H.A. and Whitehead, C.C. (2004) assessing bone mineral density in vivo: digitized fluoroscopy and ultrasound. Poultry Science 83: 207214.CrossRefGoogle ScholarPubMed
Fleming, R.H., McCormack, H.A., McTeir, L. and Whitehead, C.C. (1998) Medullary bone and humeral breaking strength in laying hens. Research in Veterinary Science 64: 6367.CrossRefGoogle ScholarPubMed
Fleming, R.H., McCormack, H.A. and Whitehead, C.C. (2000) Prediction of breaking strength in osteoporotic avian bone using digitized fluoroscopy, a low cost radiographic technique. Calcified Tissue International 67: 309313.CrossRefGoogle ScholarPubMed
Floriani, L.P., Neilson, M.D., Debevoise, T. and Hyatt, G.W. (1967) Mechanical properties of healing bone by the use of ultrasound. Surgery Forum 18: 468470.Google Scholar
Foldes, A.J., Rimon, A., Keinan, D.D. and Popovitzer, M.M. (1995) Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone 17: 363376.CrossRefGoogle ScholarPubMed
Genant, H.K., Lang, T.F., Engelke, L.K., Fuerst, T., Glüer, C.C., Majumdar, S. and Jergas, M.M. (1996) Advances in the non invasive assessment of bone density, quality, and structure. Calcified Tissue International 59: S10.Google Scholar
Gerlanc, M., Haddad, D., Hyatt, G.W., Langloh, J.T. and St. Hilaire, P. (1975) Ultrasonic study of normal and fractured bone. Clinical Orthopaedics 111: 175180.CrossRefGoogle Scholar
Gill, P.J., Kernohan, G., Mawhinney, I.N., Mollan, R.A.B. and McIlhagger, R. (1989) Investigation of the mechanical properties of bone using ultrasound. Proceedings of the Institution of Mechanical Engineers. Part H. 203: 6163.CrossRefGoogle ScholarPubMed
Glüer, C.C., Wu, C.Y., Jergas, M.H., Goldstein, S.A. and Genant, H.K. (1993) Three quantitative ultrasound parameters reflect bone structure. Calcified Tissue International 55: 4652.Google Scholar
Greenfield, M.A., Craven, D.J., Wishko, D.S., Huddleston, A., Friedman, R. and Stern, R. (1975) The modulus of elasticity of human cortical bone: An in vivo measurement of bone using ultrasonography and its clinical applications. Radiology 115: 163166.CrossRefGoogle Scholar
Greenfield, M.A., Craven, D.J., Huddleston, A., Kehrer, M.L., Wishko, D. and Stern, R. (1981) Measurement of the velocity in human cortical bone in vivo. Radiology 138: 701710.Google Scholar
Gregg, E.W., Kriska, A.M., Salamone, L.M., Roberts, M.M., Andreson, S.J., Ferell, R.E., Kuller, L.H. and Cauley, J.A. (1997) The epidemiology of quantitative ultrasound: a review of relationships with bone mass, osteoporosis and fracture risk. Osteoporosis International 7: 8999Google Scholar
Hans, D., Wu, C., Njeh, C.F., Zhao, S., Augat, P., Newitt, D., Link, T., Lu, Y., Majumdar, S. and Genant, H.K. (1999) Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. Calcified Tissue International 64: 1823.CrossRefGoogle ScholarPubMed
Hans, D., Fuerst, T. and Duboeuf, F. (1997) Quantitative ultrasound bone measurement. European Radiology 7: S43S50.CrossRefGoogle ScholarPubMed
Hans, D., Schott, A.M. and Meunier, P.J. (1993) Ultrasonic assessment of bone: a review. European Journal of Medicine 2: 157163.Google Scholar
Heaney, R.P., Avioli, L.V., Chesnut, C.H., Lappe, C.H., Lappe, J., Recker, R.R. and Brandenburger, G.H. (1989) Osteoporotic bone fragility. Detection by ultrasound transmission velocity. Journal of the American Medical Association 261: 29862990.CrossRefGoogle ScholarPubMed
Hester, P.Y., Schreiweis, M.A., Orban, J.L., Mazzuco, H., Kopka, M.N., Ledur, M.C. and Moody, D.E. (2004) Assessing bone mineral density in vivo: Dual energy xray absorptiometry. Poultry Science 83: 215221.CrossRefGoogle Scholar
Holdsworth, D.W. and Thornton, M.M. (2002) Micro-CT in small animal and specimen imaging. Trends in Biotechnology 20 (Supplement 8): S3439.Google Scholar
Ito, M., Nakamura, T., Matsumoto, T., Tsurusaki, K. and Hayashi, K. (1998) Analysis of trabecular micro-architecture of human iliac bone using micro-computed tomography in patients with hip arthrosis with or without vertebral fracture. Bone 23: 163169.CrossRefGoogle ScholarPubMed
Jeffcott, L.B. and McCarthy, R.N. (1985) Ultrasound as a tool for assessment of bone quality in horses. Veterinary Record 116: 337342.CrossRefGoogle Scholar
Kann, P., Schulz, U., Klaus, D., Piepkorn, B. and Beyer, J. (1995) In vivo investigation of material quality of bone tissue by measuring apparent phalangeal ultrasound transmission velocity. Clinical Rheumatology 14: 2634.CrossRefGoogle ScholarPubMed
Kaufman, J.J. and Einhorn, T.A. (1993) Ultrasound assessment of bone. Journal of Bone and Mineral Research 8: 517525.CrossRefGoogle ScholarPubMed
Ketcham, R.A. and Carlson, W.D. (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Computers & Geosciences 27: 381400.CrossRefGoogle Scholar
Korver, D.R., Saunders-Blades, J.L. and Nadeau, K.L. (2004) Assessing bone mineral density in vivo. Quantitative Computed Tomography 83: 222229.Google Scholar
Kurth, A.A. and üller, R. (2001) The effect of an osteolytic tumour on the three dimensional trabecular bone morphology in an animal model. Skeletal Radiology 30: 9498.Google Scholar
Lang, S.B. (1970) Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones. IEEE Trans. Biomechanical Engineering 17: 101105.CrossRefGoogle ScholarPubMed
Langton, C.M., Ali, A.V., Riggs, C.M., Evans, G.P. and Bonfield, W. (1990) A contact method for the assessment of ultrasonic velocity and attenuation in cortical and cancellous bone. Clinical Physics and Physiological Measurements 11: 243249.Google Scholar
Lees, S. and Davidson, C.L. (1977) The role of collagen in the elastic properties of calcified tissues. Journal of Biomechanics 10: 473486.CrossRefGoogle ScholarPubMed
Lepage, O.M., Carstanjem, B. and Uebelehart, D. (2001) Non-invasive assessment of equine bone: an update. The Veterinary Journal 161: 1023.CrossRefGoogle ScholarPubMed
Lilburn, M.S. (1994) Skeletal growth of commercial poultry species. Poultry Science 73: 897903.CrossRefGoogle ScholarPubMed
Lowet, G. (1993) Vibration and ultrasound propagation analysis in long bones, Application to the monitoring of fracture healing and detection of osteoporosis, PhD Dissertation, K.U. Leuven, Belgium, September.Google Scholar
Lowet, G., Rüegsegger, P., Weinanas, H. and Meunier, A. (1997) In vivo and in vitro measurement of ultrasound velocity in cortical bone, in: Studies in Health Technology and Informatics (Lowet, G. Rüegsegger, P. Weinans, H. and Meunier, A. eds) Vol. 40, IOS Press, Amsterdam, The Netherlands.Google Scholar
Lowet, G. and Van Der Perre, G. (1992) Monitoring of bone consolidation by ultrasound velocity measurement, Proc. of 14th Annual Conference of the IEEE Engineering in Medicine and Biology Society, pp 21292130 November, Paris, France.Google Scholar
Lowet, G. and Van Der Perre, G. (1996) Ultrasound velocity measurement in long bones: Measurement method and simulation of ultrasound wave propagation. Journal of Biomechanics 29: 12551262.CrossRefGoogle ScholarPubMed
Markel, M.D., Morin, R.L., Wikenheiser, M.A., Robb, R.A. and Chao, E.Y.S. (1991) Multiplanar quantitative computed tomography for bone mineral analysis. American Journal of Veterinary Research 52: 14791483.CrossRefGoogle ScholarPubMed
Mitchell, R.W., Rosebrough, R.W. and Conway, J.M. (1997) Body composition analysis of chickens by duel energy x-ray absorptiometry. Poultry Science 76: 17461752.CrossRefGoogle Scholar
Müller, R. and Rüegsegger, P. (1997) Micro-tomographic imaging for the non-destructive evaluation of trabecular bone architecture, in: Bone Research in Biomechanics (Lowet, G.Rüegsegger, P.Weinans, H. and Meunier, A. eds) pp 6180, IOS Press, Amsterdam, Netherlands.Google Scholar
Newman, S. and Leeson, S. (1998) Effect of housing birds in cages or an aviary system on bone characteristics. Poultry Science 77: 14921496.CrossRefGoogle ScholarPubMed
Njeh, C.F., Boivin, C.M. and Langton, C.M. (1997) The role of ultrasound in the assessment of osteoporosis: a review. Osteoporosis International 7: 722.Google Scholar
Njeh, C.F., Hans, D., Wu, C., Kantorovich, E., Sister, M., Fuerst, T. and Genant, H.K. (1999) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Medical Engineering & Physics 21: 651659.Google Scholar
Odgaard, A. (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20: 315328.Google Scholar
Pacifici, R., Rupich, R., Griffin, M., Chines, A., Susman, N. and Avioli, L. (2000) Dual energy radiography versus quantitative for the diagnosis of osteoporosis. Journal of Clinical Endocrinology 70: 705710.CrossRefGoogle Scholar
Pierret, A., Capowiez, Y., Belzunces, L. and Moran, C.J. (2002) 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma 106: 247271.Google Scholar
Rich, C., Klinik, E., Smith, R. and Graham, B. (1966) Measurement of bone mass from ultrasonic transmission time. Proceedings of the Society for Experimental Biology and Medicine 123: 282.CrossRefGoogle ScholarPubMed
Rowland, L.O. JR. and Harms, R.H. (1972) Time required to develop bone fragility in laying hens. Poultry Science 51: 13391341.CrossRefGoogle ScholarPubMed
Rowland, L.O. Jr., Harms, R.H., Wilson, H.R., Ross, I.J. and Fry, J.L. (1967) Breaking strength of chick bones as an indication of dietary calcium and phosphorus adequacy. Proceedings of the Society for Experimental Biology and Medicine 126: 399401.Google Scholar
Rüegsegger, P., Koller, B. and Müller, R. (1996) A micrographic system for the non-destructive evaluation of bone architecture. Calcified Tissue International 58: 2429.Google Scholar
Saulgozis, J., Pontaga, I., Lowet, G. and Van Der Perre, G. (1996) The effect of fracture and fracture fixation on ultrasonic velocity and attenuation. Physiological Measurements 17: 201211.Google Scholar
Schreiweis, M.A., Orban, J.I., Ledur, M.C. and Hester, P.Y. (2003) The use of densitometry to detect differences in bone mineral density and content of live white leghorns fed varying levels of dietary calcium. Poultry Science 82: 12921301.Google Scholar
Siegel, I.M., Anast, G.T. and Fields, T. (1958) The determination of fracture healing by measurement of sound velocity across the fracture site. Surgical Gynecology & Obstetrics 107: 327332.Google Scholar
Stuart, A.J. (1991) Bone healing in the bird: A histological and radiological study of the humerus after osteotomy and fracture repair. M.Sc. Dissertation, p 149, Guelph, ON Canada.Google Scholar
Turner, C.H. and Eich, M. (1991) Ultrasonic velocity as a predictor of strength in bovine cancellous bone. Calcified Tissue International 49: 116119.CrossRefGoogle ScholarPubMed
Van Burskirk, W.C., Cowin, S.C. and Ward, R.N. (2000) Ultrasonic measurements of orthotropic elastic constants of bovine femoral bone. Journal of Biomechanical Engineering 103: 6771.CrossRefGoogle Scholar
Van Der Perre, G. and Lowet, G. (1996) In vivo assessment of bone mechanical properties by vibration and ultrasonic wave propagation analysis. Bone 18: 29S35S.CrossRefGoogle ScholarPubMed
Weiss, M., Ben-Shlomo, A., Hagag, P. and Ish-Shalom, S. (2000) Discrimination of proximal hip fracture by quantitative ultrasound measurement at the radius. Osteoporosis International 11: 411416.Google Scholar
Whitehead, C.C. and Fleming, R.H. (2000) Osteoporosis in cage layers. Poultry Science 79: 10331041.CrossRefGoogle ScholarPubMed
Yang, R.S., Lin, C.H., Huang, T.H. and Lin, S.J. (2001) Prediction of fracture load: Achicken tibia model of impending pathological fracture using ultrasound densitometry. Bone 28: S181.Google Scholar
Yoon, H.S. and Katz, J.L. (1976a) Ultrasonic wave propagation in human cortical bone I. Theoretical considerations for hexagonal symmetry. Journal of Biomechanics 9: 407412.CrossRefGoogle ScholarPubMed
Yoon, H.S. and Katz, J.L. (1976b) Ultrasonic wave propagation in human cortical bone. II. Measurement of elastic properties and microhardness. Journal of Biomechanics 9: 459464.Google Scholar
Zerahn, B., Borgwardt, A., Hejsgard, C. and Lemser, T. (1996) Ultrasound and BMD measurements of the os calcis in normal Danish adults. European Journal of Experimental Musculoskeletal Research 4: 154159.Google Scholar