Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T23:31:45.574Z Has data issue: false hasContentIssue false

Choline, Methionine and Sulphate Interrelationships in Poultry Nutrition1—A Review

Published online by Cambridge University Press:  18 September 2007

R. D. Miles
Affiliation:
Department of Poultry Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, U.S.A.
R. H. Harms
Affiliation:
Department of Poultry Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, U.S.A.
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Finca, S. A., Apartado Aéreo, 5028 Bogotá, Colombia, South America.

1

Florida Agricultural Experiment Station Journal, Series no 3937.

References

Almquist, H. J., (1964). Inorganic sulphur in animal nutrition. Feedstuffs, 36(24): 60.Google Scholar
Almquist, H. J., and Grau, C. R., (1944a). Interrelation of methionine, choline, betaine and arsenocholine in the chick. J. Nutr. 27: 263.CrossRefGoogle Scholar
Almquist, H. J., and Grau, C. R., (1944b). Further studies on cystine, methionine and choline in chick diets. J. Nutr. 29: 219.CrossRefGoogle Scholar
Awapara, J., and Wingo, W. J., (1953). On the mechanism of taurine formation from cysteine in the rat. J. Biol. Chem. 203: 189.CrossRefGoogle ScholarPubMed
Baker, D. H. (1976). Nutritional and metabolic interrelationships among sulphur compounds in avian nutrition. Fed. Proc. 35: 1917.Google ScholarPubMed
Balnave, D., (1981). Production and physiological responses of broilers fed different concentrations of dietary choline and sulphur amino acids. In Proc. Nutrius Inc. Symposium (Arkansas Nutrition Conference) p. 1.Google Scholar
Barnes, R. H., and Kwong, E., (1967). Choline biosythesis and choline requirement in the rat as affected by coprophagy. J. Nutr. 92: 224.CrossRefGoogle Scholar
Bernheim, F., and Bernheim, M. L., (1938). The choline oxidase of liver. Am. J. Physiol. 121: 55.CrossRefGoogle Scholar
Best, C. H., and Channon, H. J., (1935). The action of choline and other substances in the prevention and cure of fatty livers. Biochem. J. 29: 2651.CrossRefGoogle ScholarPubMed
Best, C. H., Channon, H. J., and Ridout, J. H., (1934). Choline and the dietary production of fatty livers. J. Physiol. 81: 409.CrossRefGoogle ScholarPubMed
Best, C. H., and Huntsman, M. E., (1932). The effects of the components of lecithine upon deposition of fat in the liver. J. Physiol. 75: 405.CrossRefGoogle ScholarPubMed
Binkley, F., and Du Vigneaud, V., (1942). The formation of cysteine from homocysteine and serine by liver tissue of rats. J. Biol. Chem. 144: 507.CrossRefGoogle Scholar
Bornstein, S., and Plavnik, Y., (1977). The sparing action of inorganic sulphate on sulphur amino acids in practical broiler diets: Preliminary trials with young chicks. Br. Poultry Sci. 18: 19.CrossRefGoogle ScholarPubMed
Burke, K. A., Nystrom, R. F. and Johnson, C., (1951). The role of methionine as a methyl donor for choline synthesis in the chick. J. Biol. Chem. 118: 723.CrossRefGoogle Scholar
Cantoni, G. L., (1953). S-adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosine-triphosphate. J. Biol. Chem. 204: 403.CrossRefGoogle Scholar
Chaikoff, I. L., Entenman, C., and Montgomery, M. L., (1945). The mechanism of action of the antifatty liver factor of the pancreas. J. Biol. Chem. 160: 489.CrossRefGoogle ScholarPubMed
Clandinin, D. R., Cravens, W. W., Halpin, J. G., and Hart, E. B., (1946). Supplementary value of methionine, cystine and choline in a practical soybean oil meal starter ration. Poultry Sci. 25: 509.CrossRefGoogle Scholar
Dale, H., (1937). Transmission of nervous effects by acetylcholine. Harvey Lectures 32: 229.Google Scholar
Damron, B. L., and Harms, R. H., (1973). Partial replacement of sulphur amino acids in layer diets with sodium sulphate. Poultry Sci. 52: 400.CrossRefGoogle Scholar
De La Huerga, J., and Popper, H., (1951M). Urinary excretion of choline metabolites following choline administration in normals and patients with hepatobiliary diseases. J. Clin. Invest. 30: 463.CrossRefGoogle ScholarPubMed
De La Huerga, J., Gyorgy, P., Waldstein, S., Katz, R., and Popper, H., (1953). The effects of antimicrobial agents upon choline degradation in the intestinal tract. J. Clin. Invest. 33: 1117.CrossRefGoogle Scholar
Du Vigneaud, V., Chandler, J. P., Cohn, M. and Brown, G. B., (1940). The transfer of the methyl group from methionine to choline and creatine. J. Biol. Chem. 134: 787.CrossRefGoogle Scholar
Du Vigneaud, V., Chandler, J. P., Moyer, A. W. and Keppel, D. M., (1939). The effect of choline on the ability of homocystine to replace methionine in the diet. J. Biol. Chem. 131: 57.CrossRefGoogle Scholar
Du Vigneaud, V., Cohn, M., Chandler, J. P., Schenck, J. R. and Simmonds, S., (1941). The utilization of the methyl group of methionine in the biological synthesis of choline and creatine. J. Biol. Chem. 140: 625.CrossRefGoogle Scholar
Du Vigneaud, V., Ressler, C. and Rachele, J. R., (1950). The biological synthesis of “Labile methyl groups.” Science 112: 267.CrossRefGoogle Scholar
Fritz, J. C., Roberts, T., and Boehne, J. W., (1967). The chick's response to choline and its application to an assay for choline in feedstuffs. Poultry Sci. 46: 1447.CrossRefGoogle Scholar
Gerry, R. W., Carrick, C. W., and Hauge, S. M., (1948). Methionine and choline in a simplified chick ration. Poultry Sci. 27: 161.CrossRefGoogle Scholar
Gordon, R. S., and Sizer, I. W., (1955). Ability of sodium sulphate to stimulate growth of the chicken. Science 122: 1270.CrossRefGoogle ScholarPubMed
Grau, C. R., and Almquist, H. J., (1943). The utilization of the sulphur amino acids by the chick. J. Nutr. 26: 631.CrossRefGoogle Scholar
Griffith, W. H., and Mulford, D. J., (1941). Choline metabolism. VI. Haemmorrhagic degeneration and the labile methyl supply. J. Am. Chem. Soc. 63: 929.CrossRefGoogle Scholar
Griffith, W. H., and NYC, J. F., (1971). Choline. Page 3154, Vol. III. in The Vitamins, Sebrel, W. H., and Harris, R. S., editors, 2nd ed. Academic Press, New York. Google Scholar
Harms, R. H., and Eberst, D. P., (1974). Influence of dietary cupric sulphate on the response of young turkeys to sodium sulphate. Poultry Sci. 53: 1629.CrossRefGoogle Scholar
Hegsted, M. D., Mills, R. C., Elvehjem, C. A. and Hart, E. B., (1941). Choline in the nutrition of chicks. J. Biol. Chem. 138. 459.CrossRefGoogle Scholar
Hinton, C. F., and Harms, R. H., (1972). Evidence for sulphate as an unidentified growth factor in fish solubles. Poultry Sci. 51: 701.CrossRefGoogle Scholar
Hove, E. L., Copeland, D. H., and Salmon, W. D., (1954). Choline deficiency in the rabbit. J. Nutr. 53: 377.CrossRefGoogle ScholarPubMed
Johnson, B. C., and James, M. F., (1948). Choline deficiency in the baby pig. J. Nutr. 36: 399.CrossRefGoogle ScholarPubMed
Johnson, B. C., Mitchell, H. H., Pinkos, J. A., and Merrill, C. C., (1951). Choline deficiency in the calf. J. Nutr. 43: 37.CrossRefGoogle ScholarPubMed
Jukes, T. H., (1939). Ineffectiveness of maganese in preventing slipped tendon in turkey poults. Poultry Sci. 18: 405.Google Scholar
Jukes, T. H., (1940a). Prevention of perosis by choline. J. Biol. Chem. 134: 789.CrossRefGoogle Scholar
Jukes, T. H., (1940b). Effect of choline and other supplements on perosis. J. Nutr. 20: 445.CrossRefGoogle Scholar
Jukes, T. H. (1941a). Studies of perosis in turkeys. Poultry Sci. 20: 251.CrossRefGoogle Scholar
Jukes, T. H. (1941b). Effects of choline, gelatin and creatine on perosis in chicks. Proc. Soc. Exp. Biol. Med. 46: 155.CrossRefGoogle Scholar
Jukes, T. H., (1941c). The effect of certain organic compounds and other dietary supplements on perosis. J. Nutr. 22: 315.CrossRefGoogle Scholar
Jukes, T. H., (1947). Choline. Ann. Rev. Biochem. 16: 193.Google Scholar
Jukes, T. H., and Bird, F. H., (1942). Prevention of perosis by biotin. Proc. Soc. Exp. Biol. Med. 49: 231.CrossRefGoogle Scholar
Ketola, H. G., and Nesheim, M. C., (1974). Influence of dietary protein and methionine levels on the requirement for choline by chickens. J. Nutr. 104: 1484.CrossRefGoogle ScholarPubMed
Klose, A. A., and Almquist, H. J., (1941). Methionine in the diet of the chick. J. Biol. Chem. 138: 467.CrossRefGoogle Scholar
Leong, K. C., Sunde, M. L., Bird, H. R., and Elvehjem, C. A., (1959). Interrelationships among dietary energy, protein, and amino acid for chickens. Poultry Sci. 38: 1267.CrossRefGoogle Scholar
Lipstein, B., Bornstein, S., and Budowski, P., (1977). Utilization of choline from crude soybean lecithin by chicks. Poultry Sci. 56: 331.CrossRefGoogle ScholarPubMed
Machlin, L. J., Jackson, J. T., Lanknau, A. H., and Pearson, P. B., (1954). Uptake of S35 in the feathers, gizzard lining, liver and muscle of young chickens after injection with radioactive methionine and sulphate. Poultry Sci. 33: 234.CrossRefGoogle Scholar
Machlin, L. J., and Pearson, P. B., (1956). Studies on utilization of sulphate for growth of the chicken. Proc. Soc. Exp. Biol. Med. 93: 204.CrossRefGoogle ScholarPubMed
Machlin, L. J., Pearson, P. B., Denton, C. A., and Bird, H. R., (1953). The utilization of sulphate sulphur by the laying hen and its incorporation into cystine. J. Biol. Chem. 205: 213.CrossRefGoogle ScholarPubMed
Mann, P. J. G., Woodward, H. E., and Quastel, J. H., (1938). Hepatic oxidation of choline and arsenocholine. Biochem. J. 32: 1024.CrossRefGoogle ScholarPubMed
March, B. E., (1981). Choline supplementation of layer diets containing soybean meal or repeseed meal as protein supplement. Poultry Sci. 60: 818.CrossRefGoogle Scholar
Martin, W. G., (1972). Sulphate metabolism and taurine synthesis in the chick. Poultry Sci. 51: 608.CrossRefGoogle ScholarPubMed
Martin, W. G., Miraglia, R. J., Spaeth, D. G. and Patrick, H., (1966). Synthesis of taurine from sulphate by the chick. Proc. Soc. Exp. Biol. Med. 122: 841.CrossRefGoogle ScholarPubMed
Marvel, J. A., Carrick, C. W., Roberts, R. E., and Hauge, S. M., (1944). The supplementary value of choline and methionine in a corn and soybean oil meal chick ration. Poultry Sci. 23: 294.CrossRefGoogle Scholar
Mason, V. C., Hansen, J. G., and Weidner, K., (1965). Studies on the quantitative incorporation of sulphate sulphur into methionine, cysteine, and taurine in the hen. Acta Agri. Scand. 15: 3.CrossRefGoogle Scholar
McKibbin, J. M., and Taylor, W. E., (1950). The nitrogenous constitutents of the tissue lipides. J. Biol. Chem. 185: 357.CrossRefGoogle Scholar
Miles, R. D., Ruiz, N., and Harms, H., (1983a). The interrelationship between methionine, choline and sulphate in broiler diets. Poultry Sci. 62: 495.CrossRefGoogle ScholarPubMed
Miles, R. D., Ruiz, N., and Harms, R. H., (1983b). The interrelationship between methionine, choline and sulphate in turkey diets. Proc. Soc. Exp. Biol. Med. 173: 32.CrossRefGoogle ScholarPubMed
Miraglia, R. J., Martin, W. C., Spaeth, D. G., and Patrick, H., (1966). On the synthesis of taurine from sulphate by the chick. I. Influential dietary factors. Proc. Soc. Exp. Biol. Med. 123: 725.CrossRefGoogle ScholarPubMed
Molitoris, B. A., and Baker, D. H., (1976). Choline utilization in the chick as influenced by levels of dietary protein and methionine. J. Nutr. 106: 412.CrossRefGoogle Scholar
Muntz, J. A., (1950). The inability of choline to transfer a methyl group directly to homocysteine for methionine formation. J. Biol. Chem. 182: 489.CrossRefGoogle Scholar
Nesheim, M. C., Norvell, M. J., Ceballos, E., and Leach, R. M., Jr., (1971). The effect of choline supplementation of diets for growing pullets and laying hens. Poultry Sci. 50: 820.CrossRefGoogle ScholarPubMed
Nesheim, R. O., and Johnson, B. C., (1950). Effect of a high level of methionine on the dietary choline requirement of the baby pig. J. Nutr. 41: 149.CrossRefGoogle ScholarPubMed
Newmann, A. L., Krider, J. L., James, M. F., and Johnson, C., (1949). The choline requirement of the baby pig. J. Nutr. 38: 195.CrossRefGoogle Scholar
Norvell, M. J., and Nesheim, M. C., (1969). Studies on rate of choline synthesis in chicks and laying hens. Proc. Cornell Nutr. Conf. p. 31.Google Scholar
Pesti, G. M., Benevenga, N. J., Harper, A. E., and Sunde, M. L., (1981). Effects of high dietary protein and nitrogen levels on the preformed methyl group requirement and methionine-induced growth depression in chicks. Poultry Sci. 60: 425.CrossRefGoogle ScholarPubMed
Pesti, G. M., Harper, A. E., and Sunde, M. L., (1979). Sulphur amino acid and methyl donor status of corn-soy diets fed to starting broiler chicks and poultry poults. Poultry Sci. 58: 1541.CrossRefGoogle ScholarPubMed
Pesti, G. M., Harper, A. E., and Sunde, M. L., (1980). Choline/methionine nutrition of starting broiler chicks. Three models for estimating the choline requirement with economic considerations. Poultry Sci. 59: 1073.CrossRefGoogle ScholarPubMed
Plavnik, Y., and Bornstein, S., (1977). The sparing action of inorganic sulphate on sulphur amino acids in practical broiler diets: the capacity of sodium sulphate to replace some of the supplementary methionine in diets of chicks up to 5 weeks of age. Br. Poultry Sci. 18: 33.CrossRefGoogle ScholarPubMed
Quillin, E. C., Combs, G. F., Creek, R. D., and Romoser, G. L., (1961). Effect on choline on the methionine requirements of broiler chickens. Poultry Sci. 40: 639.CrossRefGoogle Scholar
Ross, E., Damron, B. L., and Harms, R. H., (1972). The requirements for inorganic sulphate in the diet of chicks for optimum growth and feed efficiency. Poultry Sci. 51: 1606.CrossRefGoogle Scholar
Ross, E., and Harms, R. H., (1970). The response of chicks to sodium sulphate supplementation of a corn-soy diet. Poultry Sci. 49: 1605.CrossRefGoogle ScholarPubMed
Sasse, C. E., and Baker, D. H., (1974a). Factors affecting sulphate-sulphur utilization by the young chick., Poultry Sci. 53: 652.CrossRefGoogle Scholar
Sasse, C. E., and Baker, D. H., (1974b). Sulphur utilization by the chick with emphasis on the effect of inorganic sulphate on the cystine-methionine interrelationship. J. Nutr. 104: 244.CrossRefGoogle ScholarPubMed
Sloan, D. R., and Harms, R. H., (1972). Utilization of inorganic sulphate by turkey poults. Poultry Sci. 51: 1673.CrossRefGoogle ScholarPubMed
Soares, J. H., Nicholson, J. L., Bossard, E. H., and Thomas, O. P., (1974). Effective levels of sulphate supplementation in broiler diets. Poultry Sci. 53: 235.CrossRefGoogle ScholarPubMed
Strecker, A., (1849). Beobachtungen über die Galle verschiedener Thiere. Ann. Chem. 70: 149.CrossRefGoogle Scholar
Stryer, L., (1981). Biochemistry. 2nd Ed. W. H. Freeman and Co., San Francisco. Google Scholar
Treadwell, C. R., (1948). Growth and lipotropism. II. The effects of dietary methionine, cystine, and choline in the young white rat. J. Biol. Chem. 176: 1141.CrossRefGoogle Scholar
Virtue, R. W., and Doster-Virtue, M. E., (1939). Studies on the production of taurocholic acid in the dog. J. Biol. Chem. 127: 431.CrossRefGoogle Scholar
Welch, A. D., and Landau, R. L., (1942). The arsenic analogue of choline as a component of lecithin in rats fed arsenocholine choloride. J. Biol. Chem. 144: 581.CrossRefGoogle Scholar
Wilgus, H. S., Norris, L. C., and Heuser, G. F., (1937). The role of manganese and certain other trace elements in the prevention of perosis. J. Nutr. 14: 155.CrossRefGoogle Scholar
Wolbach, S. B., and Hegsted, D. M., (1953). Perosis. A.M.A. Arch. Pathol. 56: 437.Google ScholarPubMed