Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T23:36:06.247Z Has data issue: false hasContentIssue false

Broiler breeding strategies over the decades: an overview

Published online by Cambridge University Press:  20 June 2011

A.K. THIRUVENKADAN*
Affiliation:
Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Namakkal-637 002,Tamil Nadu, India
R. PRABAKARAN
Affiliation:
Vice-Chancellor, Tamil Nadu Veterinary and Animal Sciences University, Chennai-600 051, Tamil Nadu, India
S. PANNEERSELVAM
Affiliation:
Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Namakkal-637 002, Tamil Nadu, India
*
Corresponding author: drthirusiva @gmail.com
Get access

Abstract

The following review considers the history of poultry breeding to date, and the contribution of both traditional and molecular genetic methods in the selection of breeding stock and in performance improvements. The genetic aspects of eradicating disease and stress-related problems in broilers are discussed in detail.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ABASHT, B., DEKKERS, J.C.M. and LAMONT, S.J. (2006) Review of quantitative trait loci in the chicken. Poultry Science 85: 2079-2096.CrossRefGoogle ScholarPubMed
AMILLS, M., JIMENEZ, N., VILLALBA, D., TOR, M., MOLINA, E., CUBILO, D., MARCOS, C., FRANCESCH, A., SANCHEZ, A. and ESTANY, J. (2003) Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits. Poultry Science 82: 1485-1493.CrossRefGoogle ScholarPubMed
ANTHONY, N.B., BALOG, J.M., HUGHES, J.D., STAMPS, L., COOPER, M.A., KIDD, B.D., LIU, X., HUFF, G.R., HUFF, W.E. and RATH, N.C. (2001) Genetic selection of broiler lines that differ in their ascites susceptibility. 1. Selection under hypobaric conditions. Proc. 13th European Symposium on Poultry Nutrition, Blankenberge, Belgium, 2001, pp.327-328.Google Scholar
ARTHUR, J.A. and ALBERS, G.A.A. (2003) Industrial perspective on problems and issues associated with poultry breeding., in: MUIR, W.M. & AGGREY, S.E. (Eds) Poultry Genetics, Breeding and Biotechnology, pp. 1-12 (CABI Publishing, CAB International, Wallingford, UK).Google Scholar
ATZMON, G., RONIN, Y.I., KOROL, A., YONASH, N., CHENG, H. and HILLET, J. (2006) QTLs associated with growth traits and abdominal fat weight and their interactions with gender and hatch in commercial meat-type chickens. Animal Genetics 37: 352-358.CrossRefGoogle ScholarPubMed
BALOG, J.M. (2003) Ascites syndrome (pulmonary hypertension syndrome) in broiler chickens: Are we seeing the light at the end of the tunnel? Avian and Poultry Biology Reviews 14: 9-126.CrossRefGoogle Scholar
BALOG, J.M., ANTHONY, N.B., KIDD, B.D., LIU, X., COOPER, M.A., HUFF, G.R., HUFF, W.E., WIDERMAN, R.F. and RATH, N.C. (2001) Genetic selection of broiler lines that differ in their ascites susceptibility. 2. Response of the ascites lines to cold stress and bronchus occlusion. Proc. 13th European Symposium on Poultry Nutrition, Blankenberge, Belgium, 2001, pp.329-330.Google Scholar
BARBOUR, E.K., HAMADEH, S. and HILAN, C. (1996) Comparison of performance and mortality in the hybro normal and hybro giant meat poultry breeders and their offspring. Veterinary Research Communication 20: 1-7.CrossRefGoogle ScholarPubMed
BENNETT, A.K., HESTER, P.Y. and SPURLOCK, D.E.M. (2006) Polymorphisms in vitamin D receptor, osteopontin, insulin-like growth factor 1 and insulin, and their associations with bone, egg and growth traits in a layer-broiler cross in chickens. Animal Genetics 37: 283-286.CrossRefGoogle Scholar
BENNETT, A.K., HESTER, P.Y. and SPURLOCK, D.M. (2007) Relationships of a Transforming Growth Factor-β2 Single Nucleotide Polymorphism and Messenger Ribonucleic Acid Abundance with Bone and Production Traits in Chickens. Poultry Science 86: 829-834.CrossRefGoogle ScholarPubMed
BERRI, C., WACRENIER, N., MILLET, N. and LE BIHAN-DUVAL, E. (2001) Effect of selection for improved body composition on muscle and meat characteristics of broilers from experimental and commercial lines. Poultry Science 80: 833-838.CrossRefGoogle ScholarPubMed
BIAN, L.H., WANG, S.Z., WANG, Q.G., ZHANG, S., WANG, Y.X. and LI, H. (2008) Variation at the insulin-like growth factor 1 gene and its association with body weight traits in the chicken. Journal of Animal Breeding and Genetics 125: 265-270.CrossRefGoogle ScholarPubMed
BRADSHAW, R.H., KIRKDEN, R.D. and BROOM, D.M. (2002) A review of the aetiology and pathology of leg weakness in broilers in relation to welfare. Avian and Poultry Biology Reviews 13: 45-103.CrossRefGoogle Scholar
BURTON, R.W., SHERIDAN, A.K. and HOWLETT, C.R. (1981) The incidence and importance of tibial dyschondroplasia to the commercial broiler industry in Australia. British Poultry Science 22: 153-160.CrossRefGoogle Scholar
BUYS, N., SCHEELE, C.W., KWAKERNAK, C. and DECUYPERE, E. (1999) Performance and physiological variables in broiler chicken lines differing in susceptibility to the ascites syndrome: 2. Effect of ambient temperatures on partial efficiencies of protein and fat retention and plasma hormone concentration. British Poultry Science 40: 140-144.CrossRefGoogle Scholar
CAHANER, A., AJUH, J.A., SIEGMUND-SCHULTZE, M., AZOULAY, Y., DRUYAN, S. and ZÁRATE, A.V. (2008) Effects of the genetically reduced feather coverage in naked neck and featherless broilers on their performance under hot conditions. Poultry Science 87: 2517-252.CrossRefGoogle ScholarPubMed
CAHANER, A., DEEB, N. and GUTMAN, M. (1993) Effect of plumage reducing naked-neck (Na) gene on the performance of fast growing broilers at normal and high ambient temperatures. Poultry Science 72: 767-775.CrossRefGoogle Scholar
CAHANER, A., NITZAN, Z. and NIR, I. (1986) Reproductive performance of broiler lines divergently selected on abdominal fat. Poultry Science 65: 1236-1242.CrossRefGoogle Scholar
CAMPOS, R.L.R., NONES, K., LEDUR, M.C., MOURA, A.S.A.M.T., PINTO, L.F.B., AMBO, M., BOSCHIERO, C., RUY, D.C., BARON, E.E., NINOV, K., ALTENHOFEN, C.A.B., SILVA, R.A.M.S., ROSÁRIO, M.F., BURT, D.W. and COUTINHO, L.L. (2009) Quantitative trait loci associated with fatness in a broiler–layer cross. Animal Genetics 40: 729-736. doi: 10.1111/j.1365-2052.2009.01910.x.CrossRefGoogle Scholar
CAO, Z.P., WANG, S.Z., WANG, Q.G., WANG, Y.X. and LI, H. (2007) Association of Spot14α gene polymorphisms with body weight in the chicken. Poultry Science 86: 1873-1880.CrossRefGoogle ScholarPubMed
CARLBORG, , Ö., , KERJE, S., SCHUTZ, K., JACOBSSON, L., JENSEN, P. and ANDERSSON, L. (2003) A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Research 13: 413-421.CrossRefGoogle ScholarPubMed
CHEN, C.F., BORDAS, A. and TIXIER-BOICHARD, M. (2002) Effect of high ambient temperatures and naked neck genotype on egg production in purebred and crossbred dwarf brown-egg layers selected for improved clutch length. Proc. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, August 19-23, 2002.Google Scholar
CHOI, C.H., CHO, B.W., JEON, G.J. and LEE, H.K. (2006) Identification of novel SNPs with effect on economic traits in uncoupling protein gene of Korean native chicken. Asian-Australasian Journal of Animal Science 19: 1065-1070.CrossRefGoogle Scholar
D'ANDRÉ HIRWA, C., YAN, W., WALLACE, P., NIE, Q., LUO, C., LI, H., SHEN, X., SUN, L., TANG, J., LI, W., ZHU, X., YANG, G. and ZHANG, X. (2010) Effects of the thyroid hormone responsive spot 14α gene on chicken growth and fat traits. Poultry Science 89:1981-1991.CrossRefGoogle ScholarPubMed
DECUYPERE, E., BRUGGEMAN, V., BARBATO, G.F. and BUYSE, J. (2003) Growth and reproduction problems associated with selection for increased broiler meat production, in: MUIR, W.M. & AGGREY, S.E. (Eds) Poultry Genetics, Breeding and Biotechnology, (CABI Publishing, CAB International, Wallingford, UK).Google Scholar
DECUYPERE, E., BUYSE, J. and BUYS, N. (2000) Ascites in broiler chickens: exogenous and endogenous structural and functional causal factors. World's Poultry Science Journal 56: 367-377.CrossRefGoogle Scholar
DECUYPERE, E., HOCKING, P.M., TONA, K., ONAGBESAN, O., BRUGGEMAN, V., JONES, E.K.M., CASSY, S., RIDEAU, N., METAYER, S., JEGO, Y., PUTTERFLAM, J., TESSERAUD, S., COLLIN, A., DUCLOS, M., TREVIDY, J.J. and WILLIAMS, J. (2006) Broiler breeder paradox; a project report. World's Poultry Science Journal 62: 443-453.CrossRefGoogle Scholar
DEEB, N. and CAHANER, A. (1999) The effects of naked neck genotypes, ambient temperatures and feeding status and their interactions on body temperature and performance of broilers. Poultry Science 78: 1341-1346.CrossRefGoogle ScholarPubMed
DEEB, N. and CAHANER, A. (2001) Genotype-by-environment interaction with broiler genotypes differing in growth rate. 1. The effects of high ambient temperature and naked-neck genotype on lines differing in genetic background. Poultry Science 80: 695-702.CrossRefGoogle ScholarPubMed
DEEB, N. and CAHANER, A. (2002) Genotype-by-environment interaction with broiler genotypes differing in growth rate. 3. Growth rate and water consumption of broiler progeny from weight-selected versus nonselected parents under normal and high ambient temperatures. Poultry Science 81: 293-301.CrossRefGoogle ScholarPubMed
DRUYAN, S., HADAD, Y. and CAHANER, A. (2008) Growth rate of ascites-resistant versus ascites-susceptible broilers in commercial and experimental lines. Poultry Science 87: 904-911.CrossRefGoogle ScholarPubMed
DUCRO, B.J. and SORENSON, P. (1992) Evaluation of a selection experiment on tibial dyschondroplasia in broiler chickens. Proc. XIX World's Poultry Congress, Dutch Branch of the WPSA, Amsterdam,1992, 2:386-389.Google Scholar
DUNN, I.C., MIAO, Y.W., MORIS, A., ROMANOV, M.N., WILSON, P.W. and WADDINGTON, D. (2004) A study of association between genetic markers in candidate genes and reproductive traits in one generation of a commercial broiler breeder hen population. Heredity 92: 128-134.CrossRefGoogle ScholarPubMed
EITAN, Y. and SOLLER, M. (2002) Associated effects of sixty years of commercial selection for juvenile growth rate in broiler chickens: Endo/exophysiological, or genetic? Proc. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, August 19-23, 2002.Google Scholar
EL-GENDY, E.A., NASSAR, M.K. and MOSTAGEER, A. (2007) Genotype-environment interaction in relation to heat tolerance in chickens: 2. Variation in juvenile growth of warm regions' oriented breeds. International Journal Poultry Science 6:322-328.CrossRefGoogle Scholar
EMMERSON, D. (2003) Breeding objectives and selection strategies for broiler production, in: MUIR, W.M. & AGGREY, S.E. (Eds) Poultry Genetics, Breeding and Biotechnology, pp. 133-136 (CABI Publishing, CAB International, Wallingford, UK).Google Scholar
ETCHES, R.J. (2001) From chicken coops to genome maps: Generating phenotype from the molecular blueprint. Poultry Science 80:1657-1661.CrossRefGoogle ScholarPubMed
FENG, X.P., KUHNLEIN, U., FAIRFULL, R.W., AGGREY, S.E., YAO, J. and ZADWORNY, D. (1998) A genetic marker in the growth hormone receptor gene. Journal of Heredity 89:355-359.CrossRefGoogle ScholarPubMed
FLOCK, D.K., LAUGHLIN, K.F. and BENTLEY, J. (2005) Minimizing losses in poultry breeding and production: how breeding companies contribute to poultry welfare. World's Poultry Science Journal 61: 227-237.CrossRefGoogle Scholar
FLOCK, D.K. and PREISINGER, R. (2002) Breeding plans for poultry with emphasis on sustainability. Proc. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, August 19-23, 2002.Google Scholar
GAYA, L.G., FERRAZ, J.B.S., BALIEIRO, J.C.C., MATTOS, E.C., COSTA, A.M.M.A., MICHELAN FILHO, T., FELÍCIO, A.M., ROSA, A.F., MOURÃO, G.B., ELER, J.P., SILVA, M.E.B., QUEIRÓZ, L., AFÁZ, A.L.M., LONGO, N.M., GARAVAZO, B.R. and NAKASHIMA, S.H. (2006) Heritability estimates for meat quality traits in a male broiler line. Proc. 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, MG, Brasil, August 13-18, 2006.Google Scholar
GLASBEY, C.A. and ROBINSON, C.D. (2002) Estimators of tissue proportions from X-ray CT images. Biometrics 58: 928-936.CrossRefGoogle ScholarPubMed
GORDON, J.F. (1974) Broilers fifty year-old meat industry presents outstanding picture of specialization chapter II, in: HANKE, O.A., SKINNER, J.L. & FLOREA, J.H. (Eds) American Poultry History 1923-1973 (American Printing and Publishing INC, Madison, Wisconin).Google Scholar
GRASHORN, M.A. (1996) Real-time sonography. An excellent tool for estimating breast meat yield of meat type chicken in vivo. Proc. 20th World's Poultry Congress, New Delhi, India, 1996. pp.60-61.Google Scholar
GROENEN, M.A.M., CHENG, H.H., BUMSTEAD, N., BENKEL, B.F., ELWOOD BRILES, W., BURKE, T., BURT, D.W., CRITTENDEN, L.B., DODGSON, J., HILLEL, J., LAMONT, S., DE LEON, A.P., SOLLER, M., TAKAHASHI, H. and VIGNAL, A. (2000) A consensus linkage map of the Chicken genome. Genome Research 10: 137-147.Google ScholarPubMed
HARTMANN, W. and FLOCK, D.K. (1979) Line and family effects on the incidence of twisted legs in meat type chickens. Proc. British Poultry Breeders Roundtable, Glasgow, 1979, pp.1-18.Google Scholar
HAVENSTEIN, G.B., FERKET, P.R. and QURESHI, M.A. (2003a) Growth, liveability and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science 82: 1500-1508.CrossRefGoogle Scholar
HAVENSTEIN, G.B., FERKET, P.R. and QURESHI, M.A. (2003b) Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science 82: 1509-1518.CrossRefGoogle ScholarPubMed
HAVENSTEIN, G.B., FERKET, P.R., SCHEIDELER, S.E. and LARSON, B.T. (1994a) Growth, liveability, and feed conversion of 1957 vs 1991 broilers when fed "typical" 1957 and 1991 broiler diets . Poultry Science 73: 1785-1794.CrossRefGoogle Scholar
HAVENSTEIN, G.B., FERKET, P.R., SCHEIDELER, S.E. and RIVES, D.V. (1994b) CARCASS composition and yield of 1991 vs 1957 broilers when fed typical 1957 and 1991 broiler diets. Poultry Science 73:1795-1804.CrossRefGoogle ScholarPubMed
HLAHLA, M., SHIMOGIRI, T., KAWABE, K., NISHIBORI, M., OKAMOTO, S., HASHIGUCHI, T. and MAEDA, Y. (2009) Genotypic frequency in Asian native chicken populations and gene expression using insulin-like growth factor 1 (IGF1) gene promoter polymorphism. Journal of Poultry Science 46: 1-5.Google Scholar
HOCKING, P.M. (2005) Review of QTL mapping results in chickens. World's Poultry Science Journal 61: 215-226.CrossRefGoogle Scholar
HOCKING, P.M., THORP, B.H., BERNARD, R. and DICK, L. (1996) Comparative development of the antitrochanter in three strains of domestic fowl. Research on Veterinary Science 60: 37-43.CrossRefGoogle ScholarPubMed
HUI, Z., SHOUZHI, W., HUI, L., XIJIANG, Y., NING, L., QIN, Z., XIAOFENG, L., QIGUI, W., XIAOXIANG, H., YUXIANG, W. and ZHIQUAN. T., (2008) Microsatellite markers linked to quantitative trait loci affecting fatness in divergently selected chicken lines for abdominal fat. Asian-Australasian Journal of Animal Science 21:1389-1394.Google Scholar
IKEOBI, C.O.N., WOOLLIAMS, J.A., MORRICE, D.R., LAW, A.S., WINDSOR, D., BURT, D.W. and HOCKING, P.M. (2002) Quantitative Trait Loci affecting fatness in the chicken. Animal Genetics 33: 421-425.CrossRefGoogle ScholarPubMed
INTERNATIONAL CHICKEN GENOME SEQUENCING CONSORTIUM, (2004) Sequence and comparative analysis of the chicken genome provide unique perspective on vertebrate evolution. Nature 432: 695-716.CrossRefGoogle Scholar
JIANG, R., LI, J., QU, L., LI, H. and YANG, N. (2004) A new single nucleotide polymorphism in the chicken pituitary – specific transcription factor (POU1F1) gene associated with growth rate. Animal Genetics 35: 344-346.CrossRefGoogle ScholarPubMed
JULIAN, R.L. (1998) Rapid growth problems: Ascites and skeletal deformities in broilers. Poultry Science 77:1773-1780.CrossRefGoogle ScholarPubMed
JULIAN, R.J. (1989) Lung volume of meat –type chickens. Avian Diseases 33: 174-176.CrossRefGoogle ScholarPubMed
KENSTIN, S.C., SU, G. and SORENSEN, P. (1999) Different commercial crosses have different susceptibility to leg weakness. Poultry Science 78: 1085-1090.CrossRefGoogle Scholar
KOMENDER, P. and GRASHORN, M. (1990) Ultrasonic measurement of breast meat. Poultry International 29: 36-40.Google Scholar
KUHLERS, D.L. and MCDANIEL, G.R. (1996) Estimates of heritabilities and genetic correlations between tibial dyschondroplasia expression and body weight at two ages in broilers. Poultry Science 75: 959-961.CrossRefGoogle ScholarPubMed
LE BIHAN-DUVAL, E. (2004) Genetic variability within and between breeds of poultry technological meat quality. World's Poultry Science Journal 60: 331-340.CrossRefGoogle Scholar
LE BIHAN-DUVAL, E., BEAUMONT, C. and COLLEAU, J.J. (1996) Genetic parameters of twisted legs syndrome in broiler chickens. Genetics Selection and Evolution 28: 177-195.CrossRefGoogle Scholar
LE BIHAN-DUVAL, E., BEAUMONT, C. and COLLEAU, J.J. (1997) Estimation of the genetic correlations between twisted legs and growth or conformation traits in broiler chickens. Journal of Animal Genetics and Breeding 114: 239-259.CrossRefGoogle Scholar
LE BIHAN-DUVAL, E., BERRI, C., BAEZA E, , MILLET, N. and BEAUMONT, C. (2001) Estimation of the genetic parameters of meat characteristics and of their genetic correlations with growth and body composition in an experimental broiler line . Poultry Science 80: 839-843.CrossRefGoogle Scholar
LE BIHAN-DUVAL, E., MIGNON-GRASTEAU, S., MILLET, N. and BEAUMONT, C. (1998) Genetic analysis of a selection experiment on increased body weight and breast muscle weight as well as on limited abdominal fat weight. British Poultry Science 39: 346-353.CrossRefGoogle ScholarPubMed
LE BIHAN-DUVAL, E., MILLET, N. and REMIGNON, H. (1999) Broiler meat quality: effect of selection for increased carcass quality and estimates of genetic parameters. Poultry Science 78: 822-826.CrossRefGoogle ScholarPubMed
LE BIHAN-DUVAL, E., NADAF, J., BERRI, C., ARNOULD, C., PITEL, F., DUCLOS, M., BEAUMONT, C., VIGNAL, A., PORTER, T.E., AGGREY, S.E., SIMON, J. and COGBURN, L.A. (2006) First QTLs for breast meat technological parameters in high or low growth chicken lines. Proc. 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, MG, Brasil, August 13-18, 2006.Google Scholar
LEACH, R.M. and NESHEIM, M.C. (1965) Nutritional, genetic and morphological studies of an abnormal cartilage function in young chicks. Journal of Nutrition 86: 236-244.CrossRefGoogle Scholar
LEDUR, M.C., MELO, C.M.R., NONES, K., ZANELLA, E. L., NINOV, K., BONASSI, C.A., JAENISCH, F.R.F., MOURA, A.S.A.M.T., COUTINHO, L.L. and SCHMIDT, G.S. (2006) Genetic and phenotypic parameters for organs, body and carcass weights, and haematocrit value, in a broiler x layer cross resource population. Proc. 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, MG, Brasil, August 13-18, 2006.Google Scholar
LEI, M.M., NIE, Q.H., PENG, X., ZHANG, D.X. and ZHANG, X.Q. (2005) Single nucleotide polymorphisms of the chicken insulin –like factor binding protein 2 gene associated with chicken growth and carcass traits. Poultry Science 84: 1191-1198.CrossRefGoogle ScholarPubMed
LENG, L., WANG, S., LI, Z., WANG, Q. and LI, H. (2009) A polymorphism in the 3′-flanking region of insulin-like growth factor binding protein 2 gene associated with abdominal fat in chickens. Poultry Science 88: 938-942.CrossRefGoogle ScholarPubMed
LI, H., DEEB, N., ZHOU, H., MITCHELL, A.D., ASHWELL, C.M. and LAMONT, S.J. (2003) Chicken quantitative trait loci for growth and body composition associated with transforming growth factor-β genes . Poultry Science 82: 347-356.CrossRefGoogle ScholarPubMed
LI, H.F., ZHU, W.Q., CHEN, K.W., WU, X., TANG, Q.P., GAO, Y.S., SONG, W.T., W.J., and XU, H.L. (2009) Polymorphism in NPY and IGF-I genes associate with reproductive traits in Wenchang chicken. African Journal of Biotechnology 8: 4744-4748.Google Scholar
LILBURN, M.S. (1994) Skeletal growth of commercial poultry species. Poultry Science 73: 897-903.CrossRefGoogle ScholarPubMed
LIU, S., WANG, S.Z., LI, Z.H. and LI, H. (2007) Association of single nucleotide polymorphism of chicken uncoupling protein gene with muscle and fatness traits. Journal of Animal Breeding and Genetics 124: 230-235.CrossRefGoogle ScholarPubMed
LUBRITZ, D.L., SMITH, J.L. and MCPHESON, B.N. (1995) Heritability of ascites and the ratio of right to total ventricle weight in broiler breeder male lines. Poultry Science 74: 1237-1241.CrossRefGoogle ScholarPubMed
LUGER, D., SHINDER, D., RZEPAKOVSKY, V., RUSAL, M. and YADAV, S. (2001) Association between weight gain, blood parameters and thyroid hormones and development of ascites syndrome in broiler chickens. Poultry Science 80: 965-971.CrossRefGoogle ScholarPubMed
MASABANDA, J.S., BURT, D.W., O'BRIEN, P.C.M., VIGNAL, A., FILON, V., WALSH, P.S, COX, H., TEMPEST, H.G., SMITH, J., HABERMANN, F., SCHMID, M., MATSUDA, Y., FERGUSON-SMITH, M.A., CROOIJMANS, R.P.M.A., GROENEN, M.A.M and GRIFFIN, D.K. (2004) Molecular cytogenetic definition of the chicken genome: The first complete avian karyotype. Genetics 166: 1367-1373.CrossRefGoogle ScholarPubMed
MATHUR, P.K. (2003) Genotype-environment interaction: Problems associated with selection for increased production, in: MUIR, W.M. & AGGREY, S.E. (Eds) Poultry Genetics, Breeding and Biotechnology, pp. 1-12 (CABI Publishing, CAB International, Wallingford, UK).Google Scholar
MATHUR, P.K. and HORST, P. (1989) Temperature stress and tropical location as factors for genotype x environment interactions, in: MERAT, P. (ed.) Genotype x Environment Interactions in Poultry Production, pp. 83-96 (Institut National de la Recherche Agronomique, Jouy-en-Josas, France).Google Scholar
MAXWELL, M.H. and ROBERTSON, G.W. (1997) World broiler ascites survey 1996. Poultry International 36: 16-19.Google Scholar
MCELROY, J.P., HARRY, D.E., DEKKERS, J.C.M. and LAMONT, S.J. (2002) Molecular markers associated with growth and carcass traits in meat-type chickens. Proc. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, August 19-23, 2002.Google Scholar
MCGARY, S., ESTEVEZ, I., BAKST, M.R. and POLLOCK, D.L. (2002) Phenotypic traits as reliable indicators of fertility in male broiler breeders. Poultry Science 81:102-111.CrossRefGoogle ScholarPubMed
MERAT, P. (1990) Pleiotropic and associated effects of major genes, in: CRAWFORD, R.D. (Ed.) Poultry Breeding and Genetics, pp. 429-467 (Elsevier, Amsterdam).Google Scholar
MERCER, J.T. and HILL, W.G. (1984) Estimation of genetic parameters of skeletal defects in broiler chicken. Heredity 53: 193-2003.CrossRefGoogle Scholar
MOURA, A.S.A.M.T., BOSCHIERO, C., CAMPOS, R.L.R., AMBO, M., NONES, K., LEDUR, M.C., ROSARIO, M.F., MELO, C.M.R., BURT, D.W. and COUTINHO, L.L. (2006) Mapping QTL for performance and carcass traits in chicken chromosomes 6, 7, 8, 11 and 13. Proc. 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, MG, Brasil, August 13-18, 2006.Google Scholar
NAVARRO, P., KOERHUIS, A.N.M., CHATZIPLIS, D., VISSCHER, P.M. and HALEY, C.S. (2002) Genetic studies of ascites in a broiler population. Proc. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, August 19-23, 2002.Google Scholar
NIE, Q., FANG, M., XIE, L., ZHOU, M., LIANG, Z., LUO, Z., WANG, G., BI, W., LIANG, C., ZHANG, W. and ZHANG, X. (2008) The PIT1 gene polymorphisms were associated with chicken growth traits. BMC Genetics 9: 20 doi:10.1186/1471-2156-9-20.CrossRefGoogle ScholarPubMed
NONES, K., LEDUR, M.C., RUY, D.C., BARON, E.E., MELO, C.M.R. MOURA, A.S.A.M., , NANELLA, E.L., BURT, D.W. and COUTINHO, L.L. (2005) Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross. Animal Genetics 37: 95-100.CrossRefGoogle Scholar
OLKOWSKI, A.A., CLASSEN, H.L., RIDDELL, C. and BENNETT, C.D. (1997) A study of electrocardiographic patterns in a population of commercial broiler chickens. Veterinary Research Communication 21: 51-62.CrossRefGoogle Scholar
OU, J.T., TANG, S.Q., SUN, D.X. and ZHANG. Y., (2009) Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poultry Science 88: 722-727.CrossRefGoogle ScholarPubMed
OWEN, R.L., WIDERMAN, R.F. JR, LEACH, R.M., COWEN, B.S., DUNN, P.A. and FORD, B.C. (1995) Physiologic and electrocardiographic changes occurring in broilers reared at simulated high altitude. Avian Diseases 39: 108-115.CrossRefGoogle ScholarPubMed
PAKDEL, A., BIJMA, P., DUCRO, B.J. and BOVENHUIS, H. (2005b) Selection strategies for body weight and reduced ascites susceptibility in broilers. Poultry Science 84: 528-535.CrossRefGoogle ScholarPubMed
PAKDEL, A., VAN ARENDONK, J.A.M. VEREIJKEN, A.L.J., and BOVENHUIS, H. (2005a) Genetic parameters of ascites-related traits in broilers: effect of cold and normal temperature conditions. British Poultry Science 46: 35-42.CrossRefGoogle ScholarPubMed
PAKDEL, A., VAN ARENDONK, J.A.M., VEREIJKEN, A.L.J. and BOVENHUIS, H. (2002a) Genetic and phenotypic correlations for ascites elated traits in broilers. Proc. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, August 19-23,2002.Google Scholar
PAKDEL, A., VAN ARENDONK, L., VEREIJKEN, A. and BOVERHUIS, H. (2002b) Direct and maternal genetic effects for ascites related traits in broilers. Poultry Science 81: 1273-1279.CrossRefGoogle ScholarPubMed
PINTO, L.F.B., PACKER, I.U., LEDUR, M.C., CAMPOS, R.L.R., NONES, K., RUY, D.C. and COUTINHO, L.L. (2006) Multi-trait analysis for QTL mapping in chicken. Proc. 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, MG, Brasil, August 13-18, 2006.Google Scholar
POLLOCK, D.L. (1999) A geneticist's perspective from within a broiler primary breeder company. Poultry Science 78: 414-418.CrossRefGoogle ScholarPubMed
PYM, R.A.E., POPOVIC, B. and BODERO, D.A.V. (1998) Selection for breast meat yield in Japanese quail (Cortunix cortunix japonica) using real time ultrasound. Proc. 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia. January 11-16, 1998.Google Scholar
RABIE, T.S.K.M., CROOIJMANS, R.P.M.A., BOVENHUIS, H., VEREIJKEN, A.L.J., VEENENDAAL, T. VAN DER POEL, J.J., , VAN ARENDONK, J.A.M., PAKDEL, A. and GROENEN, M.A.M. (2005) Genetic mapping of quantitative trait loci affecting susceptibility in chicken to develop pulmonary hypertension syndrome. Animal Genetics 36: 468-476.CrossRefGoogle ScholarPubMed
RAUW, W.M., KANIS, E., NOORDHUIZEN-STASSEN, E.N. and GROMMERS, F.J. (1998) Undesirable side effects of selection for high production efficiency in farm animals: a review. Livestock. Production Science 56: 15-33.CrossRefGoogle Scholar
RIDDELL, C. (1992) Non-infectious skeletal disorders of poultry: an overview, in: WHITEHEAD, C.C. (Ed.) Bone Biology and Skeletal Disorders in Poultry, pp. 119-145 (Carfax Publishing Co., Abingdon, UK).Google Scholar
ROWE, S.J., WINDSOR, D., HALEY, C.S., BURT, D.W., HOCKING, P.M., GRIFFIN, H., VINCENT, J. and DE KONING, D.J. (2006) QTL analysis of body weight and conformation score in commercial broiler chickens using variance component and half-sib analyses. Animal Genetics 37: 269-272.CrossRefGoogle ScholarPubMed
SCHEELE, C.W., VAN DER KLIS, J.D., KWAKERNAAK, C., BUYS, N. and DECUYPERE, E. (2003) Haematological characteristics predicting susceptibility for ascites. 1. High carbon dioxide tensions in juvenile chickens. British Poultry Science 44: 484-489.CrossRefGoogle ScholarPubMed
SCHEELE, C.W., VAN DER KLIS, J. D., KWAKERNAAK, C., DEKKER, R.A., VAN MIDDLEKOOP, J.H., BUYSE, J. and DECUYPERE E., (2005) Ascites and venous carbondioxide tensions in juvenile chicken of highly selected genotypes and native strains. World's Poultry Science Journal 61: 113-129.CrossRefGoogle Scholar
SCHMIDT, G.S., FIGUEIREDO, E.A.P., LEDUR, M., DE AVILA, V.S. and SCHEUERMANN, G.N. (2006) Effect of selection for breast size in broilers. Proc. 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, MG, Brasil, August 13-18, 2006.Google Scholar
SCHMIDT, G.S., FIGUEIREDO, E.A.P., LEDUR, M.C. and FAIRFULL, R.W. (1994) Selection for reproductive traits in a white egg stock breeding programme. Proc. 5th World Congress on Genetics Applied to Livestock Production, University of Gulph, August 7-12, 1994.Google Scholar
SCHMIDT, G.S., FIGUEIREDO, E.A.P., LEDUR, M.C. and MUNARI, D.P. (1998) Correlated response on reproductive traits when broiler lines are selected for body weight. Proc. 6th World Congress on Genetics Applied to Livestock production, Armidale, Australia, January 11-16, 1998.Google Scholar
SCHMID, M., NANDA, I., HOEHN, H., SCHARTL, M., HAAF, T., BUERSTEDDE, J-M., ARAKAWA, H., CALDWELL, R.B., WEIGEND, S., BURT, D.W., SMITH, J., GRIFFIN, D.K., MASABANDA, J.S., GROENEN, M.A.M., CROOIJMANS, R.P.M.A., VIGNAL, A., FILLON, V., MORISSON, M., PITEL, F., VIGNOLES, M., GARRIGUES, A., GELLIN, J., RODIONOV, A.V., GALKINA, S.A., LUKINA, N.A., BEN-ARI, G., BLUM, S., HILLEL, J., TWITO, T., LAVI, U., DAVID, L., FELDMAN, M.W., DELANY, M.E., CONLEY, C.A., FOWLER, V.M., HEDGES, S.B, GODBOUT, R., KATYAL, S., SMITH, C., HUDSON, Q., SINCLAIR, A. and MIZUNO, S. (2005) Second report on chicken genes and chromosomes 2005. Cytogenetic and Genome Research109: 415-479.CrossRefGoogle ScholarPubMed
SCHREIWEIS, M.A., HESTER, P.Y., SETTAR, P. and MOODY, D.E. (2005) Identification of quantitative trait loci associated with egg quality, egg production and body weight in an F2 resource population of chickens. Animal Genetics 37: 106-112.CrossRefGoogle Scholar
SCOLLAN, N.D. CASTON, L.J., , LIU, Z., ZUBAIR, A.K., LEESON, S. and MCBRIDE, B.W. (1998) Nuclear magnetic resonance imaging as a tool to estimate the mass of the pectoralis muscle of chicken in vivo. British Poultry Science 39: 221-224.CrossRefGoogle Scholar
SEWALEM, A., MORRICE, D.M., LAW, A.S., WINDSOR, D., HALEY, C.S., IKEOBI, C.O.N., BURT, D.W. and HOCKING, P.M. (2002) Mapping of quantitative trait loci for body weight at 3, 6 and 9 weeks of age in a broiler layer cross. Poultry Science 81: 1775-1781.CrossRefGoogle Scholar
SEYEDABADIA, H.R, AMIRINIAB, C., AMIRMOZAFARIC, N., TORSHIZID, R.V., CHAMANIA, M. and ALIABADB, A.J. (2010) Association of apolipoprotein B gene with body growth and fatness traits in Iranian commercial broiler lines. Livestock Science 132: 177-181.CrossRefGoogle Scholar
SHARIFI, A.R., HORST, P. and SIMIANER, H. (2006) Genotype x environment- interaction with different feathering genotypes of broiler breeder dams. Proc.8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, MG, Brasil, August 13-18, 2006.Google Scholar
SHARMA, P., BOTTJE, W. and OKIMOTO, R. (2008) Polymorphisms in uncoupling protein, melanocortin 3 receptor, melanocortin 4 receptor, and pro-opiomelanocortin genes and association with production traits in a commercial broiler line. Poultry Science 87: 2073-2086.CrossRefGoogle Scholar
SHEN, S., BERRY, W., JAQUES, S., PILLAI, S. and ZHU, J. (2004) Differential expression of iodothyronine deiodinase type 2 in growth plates of chickens divergently selected for incidence of tibial dyschondroplasia, Animal Genetics 35: 114-118.CrossRefGoogle ScholarPubMed
SHERIDAN, A.K., HOWLETT, C.R. and BURTON, R.W. (1978) The incidence of tibial dyschondroplasia in broilers. British Poultry Science 19: 491-499.CrossRefGoogle ScholarPubMed
SIEGEL, P.B. (1959) Evidence of a genetic basis for aggressiveness and sex drive in the White Plymouth Rock. Poultry Science 38: 115-118.CrossRefGoogle Scholar
SINGH, B.D., CHOUDHURI, P., CHANDRA, P., MALIK, S. and SINGH, B. (1998) Effects of naked neck gene on broiler performance of two populations in tropical climate. Proc. 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia, January 11-16.Google Scholar
SORENSEN, P. and SU, G. (2001) Genetic components of tibial dyschondroplasia in broiler chickens. Proc.2nd Poultry Genetic Symposium. Hungarian Branch of the WPSA, Godollo, Hungary, 2001, pp.116-118.Google Scholar
STEWARD, P.A., MUIR, W.M., BEGIN, J.J. and JOHNSON, T.H. (1980) Feed efficiency and gain responses to protein level in two lines of birds selected for oxygen consumption. Poultry Science 59: 2692-2696.CrossRefGoogle Scholar
TONA, K., ONAGBESAN, O.M., JEGO, Y., KAMERS, B., DECUYPERE, E. and BRUGGEMAN, V. (2004) Comparison of embryo physiological parameters during incubation, chick quality and growth performance of three lines of broiler breeders differing in genetic composition and growth rate. Poultry Science 83: 507-513.CrossRefGoogle ScholarPubMed
TUFVESSON, B., TUFVESSON, M., LILLPERS, K., JOHANSSON, K. and WILHELMSON, M. (1998) Effects of selection for male comb size on egg production traits and comb size in with leghorn layer females. Proc. 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia, January 11-16,1998.Google Scholar
UEMOTO, Y., SATO, S., ODAWARA, S., NOKATA, H., OYAMADA, Y., TAGUCHI, Y., YANAI, S., SASAKI, O., TAKAHASHI, H., NIRASAWA, K. and KOBAYASHI, E. (2009) Genetic mapping of quantitative trait loci affecting growth and carcass traits in F2 intercross chickens. Poultry Science 88: 477-482.CrossRefGoogle ScholarPubMed
VAN KAAM, J.B.C.H.M., GROENEN, M.A.M., BOVENHUIS, H., VEENENDAAL, A., VEREIJKEN, A.L.J. and VAN ARENDONK, J.A.M. (1999a) Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. Poultry Science 78: 15-23.CrossRefGoogle ScholarPubMed
VAN KAAM, J.B.C.H.M., GROENEN, M.A.M., BOVENHUIS, H., VEENENDAAL, A., VEREIJKEN, A.L.J. and VAN ARENDONK, J.A.M. (1999b) Whole genome scan in chicken for quantitative trait loci affecting carcass traits. Poultry Science 78: 1091-1099.CrossRefGoogle ScholarPubMed
VAN KAAM, J.B.C.M.H., VAN ARENDONK, J.A.M., GROENEN, M.A.M., BOVENHUIS, H., VEREIJKEN, A.L.J., CROOIJMANS, R., VAN DER POEL, J.J. and VEENENDAAL, A. (1998) Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. Livestock Production Science 54: 133-150.CrossRefGoogle Scholar
VELLEMAN, S.G. (2000) The role of the extracellular matrix in skeletal development. Poultry Science 79: 985-989.CrossRefGoogle ScholarPubMed
WANG, Y., LI, H., GU, Z.L., ZHAO, J.G., WANG, Q.G. and WANG, Y.X. (2004) [Correlation analysis between single nucleotide polymorphism of the leptin receptor intron 8 and fatness traits in chickens][Article in Chinese]. Yi Chuan Xue Bao 31: 265-269.Google Scholar
WANG, Q., LI, H., LI, N., LENG, L., WANG, Y. and TANG, Z. (2006) Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken. Poultry Science 85: 429-434.CrossRefGoogle ScholarPubMed
WANG, J. L., ZHU, Q., LIU, Y.P. and DU, H.R. (2008) Associations between SNP of chicken PRKAB2 gene and slaughter and meat quality traits. Hereditas (Beijing) 30: 1033-1038.CrossRefGoogle ScholarPubMed
WIDEMAN, R.F. Jr and FRENCH, H. (2000) Ascites resistance of progeny from broiler breeders selected for two generations using chronic unilateral pulmonary artery occlusion. Poultry Science 79: 396-401.CrossRefGoogle ScholarPubMed
WIDEMAN, R.F. Jr and KIRBY, Y.K. (1996) Electrocadiographic evaluation of broilers during the onset of pulmonary hypertension initiated by unilateral pulmonary artery occlusion. Poultry Science 75: 407-416.CrossRefGoogle Scholar
WIDEMAN, R.F.JR., KIRBY, Y.K., TAVKETT, C.D., MARSON, N.E. and MCNEW, R.N. (1996) Cardio-pulmonary function during acute unilateral occlusion of the pulmonary artery in broilers fed diets containing normal or high level of arginine-HCL. Poultry Science 75: 1587-1602.CrossRefGoogle ScholarPubMed
WONG-VALLE, J., MCDANIEL, G.R., KUHLERS, D.L. and BARTELS, J.E. (1993) Divergent selection for incidence of tibial dyschondroplasia in broilers at seven weeks of age. Poultry Science 72: 421-428.CrossRefGoogle ScholarPubMed
WU, C.Q., DENG, X.M., LI, J.Y., LI, N. and YANG, N. (2006) A potential molecular marker for selection against abdominal fatness in chickens. Poultry Science 85: 1896-1899.CrossRefGoogle ScholarPubMed
YE, X.H., BROWN, S.R., NONES, K., COUTINHO, L.L., DEKKERS, J.C.M. and LAMONT, S.J. (2007) Associations of myostatin gene polymorphisms with performance and mortality traits in broiler chickens. Genetics Selection Evolution 39: 73-89.CrossRefGoogle ScholarPubMed
YIN, Q.Q. and DINGLE, J.G. (2000) The physiological response of broilers to ascites. Proc. Australian Poultry Science Symposium 12: 203.Google Scholar
YOUNIS, H.H. (2007) Maternal body weight of dwarf and normal broiler breeders as affecting the performance of their naked neck and normal progeny. Egyptian Poultry Science Journal, 27: 231-249.Google Scholar
YUNIS, R. and CAHANER, A. (1999) The effect of the naked neck (Na) and frizzle (F) genes on growth and meat yields of broilers and their interactions with ambient temperatures and potential growth rate. Poultry Science 78: 1347-1352.CrossRefGoogle ScholarPubMed
ZEREHDARAN, S., VEREIJKEN, A.L., VAN ARENDONK, J.A., BOVENHUIS, H. and VAN DER WAAIJ, E.H. (2005) Broiler breeding strategies using indirect carcass measurements. Poultry Science 84: 1214-1221CrossRefGoogle ScholarPubMed
ZHANG, S., LI, H. and SHI, H. (2006) Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9- polymorphism reveals association with body growth and obesity. Poultry Science 85: 178-184.CrossRefGoogle ScholarPubMed
ZHANG, X., MCDANIEL, G.R., ROLAND, D.A. and KUHLERS, D.L. (1998) Responses to ten generations of divergent selection for tibia dyschondroplasia in broiler chickens: Growth, egg production and hatchability. Poultry Science 77: 1065-1072.CrossRefGoogle ScholarPubMed
ZHANG, X., MCDANIEL, G.R., YALCIN, Z.S. and KUHLERS, D.L. (1995) Genetic correlations of tibial dyschondroplasia incidence with carcass traits in broilers. Poultry Science 74: 910-915.CrossRefGoogle ScholarPubMed
ZHANG, N. B., TANG, H., KANG, L., MA, Y. H., CAO, D. G., LU, Y., HOU, M. and JIANG, Y. L. (2008) Associations of single nucleotide polymorphisms in BMPR-IB gene with egg production in a synthetic broiler line. Asian-Australasian Journal of Animal Science 21: 628-632.CrossRefGoogle Scholar
ZHAO, J., MENG, H., GU, Z., WANG, Q. and LI, H. (2002) Relationship of uncoupling protein gene with fatness traits in chicken. Proc. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, August 19-23, 2002.Google Scholar
ZHOU, H., MITCHELL, A.D., MCMURTRY, J.P., ASHWELL, C.M. and LAMONT, S.J. (2005) Insulin-like growth factor-1 gene polymorphism associations with growth, body composition, skeleton integrity and metabolic traits in chickens. Poultry Science 84: 212-219.CrossRefGoogle ScholarPubMed