Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T01:02:25.205Z Has data issue: false hasContentIssue false

Approaches to determine the sex prior to and after incubation of chicken eggs and of day-old chicks

Published online by Cambridge University Press:  05 September 2008

E.F. KALETA*
Affiliation:
Klinik für Vögel, Reptilien, Amphibien und Fische, Justus-Liebig-Universität Giessen, Frankfurter Strasse 91-93, D-35392 Giessen, Germany
T. REDMANN
Affiliation:
Klinik für Vögel, Reptilien, Amphibien und Fische, Justus-Liebig-Universität Giessen, Frankfurter Strasse 91-93, D-35392 Giessen, Germany
*
Corresponding author: [email protected]
Get access

Abstract

Domestic chickens produce eggs that contain at almost equal proportions female and male embryos. For many centuries, domestic chickens were bred as dual-purpose birds for both egg and meat production. In contrast, commercial hybrid chickens are selected for one purpose only; either eggs or meat. Surplus day-old male chicks of the layer type are currently without significant commercial value and are at best used as food for e.g. carnivorous animals. All attempts to raise male chicks of the layer type for meat production have resulted in high consumption of feed and poor meat yield which is difficult to market at competitive prices. Ethical views alongside commercial considerations are now confronted with a serious dilemma regarding the limited and reasonable utilization of newly hatched male hybrid chicks from laying strains. An abundance of scientific and practical efforts have been made in both past and present times to detect the sex in eggs pre-incubation and in embryos as early as possible. These studies include attempts to determine the sex in eggs prior to and during incubation and in day-old chicks. Various manual and instrumental morphological, enzymatic and molecular methods were used. This paper reviews these methods and discusses their relevance for practical breeding and production purposes.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AHN, D.U., KIM, S.M. and SHU, H. (1997) Effect of egg size and age of hens on the solids content of chicken eggs. Poultry Science 76: 914-919.CrossRefGoogle ScholarPubMed
ARIAS, J.L., CATALDO, M., FERNANDEZ, M.S. and KESSI, E. (1997) Effect of beta-aminoproprionitrile on eggshell formation. British Poultry Science 38: 349-354.CrossRefGoogle ScholarPubMed
BACON, L.D., SMITH, E., CRITTENDEN, L.B. and HAVENSTEIN, G.B. (1988) Association of slow feathering (K) and an endogenous viral (env21) gene on the Z chromosome of chickens. Poultry Science 67: 191-197.CrossRefGoogle Scholar
BAARENDSE, P.J.J., DEBONNE, M., DECUYPERE, E., KEMP, B. and VAN DEN BRAND, H. (2007) Ontogeny of avian thermoregulation from a neural point of view. World's Poultry Science Journal 63: 267-276.CrossRefGoogle Scholar
BADYAEV, A.V., ACEVEDO DEAMAN, D., NAVARA, K.J., HILL, G.E. and MENDOCA, M.T. (2006) Evolution of sex-biased maternal effects in birds: III. Adjustment of ovulation order can enable sex-specific allocation of hormones, carotenoids, and vitamins. Journal of Evolutionary Biology 19: 1044-1057.CrossRefGoogle ScholarPubMed
BENNOVITZ-FREDERICKS, Z.M., KITAYSKY, A.S. and WINGFIELD, J.C. (2005) Steroids in allantoic waste: an integrated measure of steroid exposure in ovo. Annales of the New York Academy of Sciences 1046: 204-213.CrossRefGoogle Scholar
BERMUDEZ, A.J. and STEWARD-BROWN, B. (2003) Disease prevention and diagnosis. In: SAIF, Y.M., BARNES, H.J., GLISSON, J.R., FADLY, A.M., MCDOUGALD, L.R. & SWAYNE, D.E. (Eds) Diseases of poultry, 11th ed. Iowa State Press, Ames, Iowa, USA, 17-55.Google Scholar
BEZZEL, E. and PRINZINGER, R. (1990) Ornithologie, 2. Aufl. Eugen Ulmer Verlag, Stuttgart, p. 325.Google Scholar
BLOOM, S.E. (1969) A current list of chromosome numbers and variations for species of the avian subclass Carinatae. Journal of Heridity 60: 217-220.Google ScholarPubMed
BÖNNER, B.M., LUTZ, W., REDMANN, T., JÄGER, S., REINHARDT, B., WISSING, J., KNICKMEIER, W. and KALETA, E.F. (2004) Morphometric and allometric studies on eggshells and embryos of free-living Canada geese (Branta canadensis Linnaeus, 1758). European Journal of Wildlife Research 50: 179-186.CrossRefGoogle Scholar
BOOTH, D.T. (2006) Influence of incubation temperature on hatching phenotype in reptiles. Physiology and Biochemistry in Zoology 79: 274-281.CrossRefGoogle Scholar
CARD, L.E. and NESHEIM, M.C. (1966a) The structure of the chicken and the formation of the egg. In: CARD, E.E. & NESHEIM, M.C. (Eds) Poultry production, pp. 30-65, 10th ed.Google Scholar
CARD, L.E. and NESHEIM, M.C. (1966b) Principles of poultry breeding. In: CARD, E.E. & NESHEIM, M.C. (Eds) Poultry production, pp. 66-84, 10th ed.Google Scholar
CERIT, H. and AVANUS, K. (2007) Sex identification in avian species using DNA typing methods. World's Poultry Science Journal 63: 91-99.CrossRefGoogle Scholar
CHAMBERS, J.R. (1990) Genetics of growth and meat production in chickens. In: CRAWFORD (Ed) Poultry Breeding and genetics, pp. 599-643. Elsevier, Amsterdam.Google Scholar
COLLIGNON, P. (1928) Beeinflussung des Geschlechts des Keimes im Brutei. Deutsche Landwirtschaftliche Geflügelzeitung 31: 937-938.Google Scholar
DAMME, K. and RISTIC, M. (2003) Fattening performance, meat yield and economic aspects of meat and layer type hybrids. World's Poultry Science Journal 59: 50-52.Google Scholar
EISING, C.M., MULLER, W. and GROOTHUIS, T.G. (2006) Avian mothers create different phenotypes by hormone deposition in their eggs. Biological Letters 2: 20-22.CrossRefGoogle ScholarPubMed
ELLENDORFF, F. and KLEIN, S. (2003) Current knowledge on sex determination and sex diagnosis: potential solutions. World's Poultry Science Journal 59: 7.Google Scholar
ENGELHARDT, , VON, N. and GROOTHUIS, T.G. (2005) Measuring steroid hormones in avian eggs. Annales of the New York Academy of Sciences 1046: 181-192.CrossRefGoogle Scholar
FANGAUF, R. (1928) Feststellungen am Hühnerembryo. Archiv für Geflügelkunde 2: 336-340.Google Scholar
FLOCK, D.K. (1999) Entwicklung der reziproken rekurrenten Selektion (RRS) in der LTZ-Legehennenzucht (1969-1999). In: Anonym, 40 years of layer breeding in Cuxhaven. Jubiläumstagung, Bremen, 07.-08. Juli 1999, pp. 83-99.Google Scholar
FLOCK, D.K. and SEEMANN, G. (1993) Limits to genetic improvements of broiler stocks? Archiv für Geflügelkunde 57: 107-112.Google Scholar
FLOCK, D.K. and PREISINGER, R. (1996) Federsexbare LSL. Deutsche Geflügelwirtschaft und Schweineproduktion 48: 22-26.Google Scholar
FRIDOLFSSON, A.K. and ELLEGREN, H. (1999) A simple and universal method of molecular sexing of non-ratite birds. Journal of Avian Biology 30: 116-121.CrossRefGoogle Scholar
GERKEN, M., JAENECKE, D. and KREUZER, M. (2003) Growth, behaviour and carcass characteristics of egg-type cockerels compared to male broilers. World's Poultry Science Journal 59: 46-49.Google Scholar
GERLACH, L. (1882) Über ein Verfahren, bei horizontal gelagerten Hühnereiern den die Keimscheibe überdeckenden Bezirk der Eischale möglichst genau zu bestimmen. Sitzungsberichte der physikalisch-medizinischen Societät, Erlangen, Heft 14, S. 167-180.Google Scholar
GILL, V., ROBERTSON, H.A. and BETZ, T.W. (1983) In vivo estrogen synthesis by the developing chicken (Gallus gallus) embryo. General Comparative Endocrinology 49: 176-186.CrossRefGoogle ScholarPubMed
GLAHN R.G., , MITSOS, W.J. and WIDEMAN, R.F. Jr. (1987) Evaluation of sex differences in embryonic heart rates. Poultry Science 66: 1398-1401.CrossRefGoogle Scholar
GOLDSMITH, J.B. (1928) The history of the germ cells in the domestic fowl. Journal of Morphology and Physiology 46; reviewed in Archiv für Geflügelkunde (1929) 3: 90-91.Google Scholar
GOTH, A. and BOOTH, D.T. (2005) Temperature-dependent sex ratio in a bird. Biological Letters 1: 31-33.CrossRefGoogle ScholarPubMed
GRASHORN, M. (1987) Geflügelzucht. In: SCHOLTYSSEK, S. (Ed) Geflügel. Ulmer Verlag, pp. 176-215, Stuttgart.Google Scholar
GROEBBELS, F. (1937) Das Ei. In: GROEBBELS, F. (Ed) Der Vogel, Geschlecht und Fort-pflanzung. Gebrüder Bornträger, Berlin. Bd. 2, pp. 253-392.Google Scholar
GROSSFELD, J. (1938) Handbuch der Eierkunde. Verlag Julius Springer, Berlin, S. 43-51; pp. 308-313.CrossRefGoogle Scholar
HAMPL, A. (1992) The number of digital pad scales – a new sex character in the chick? Acta Veterinaria, Brno 61: 93-98.CrossRefGoogle Scholar
HANCE, R.T. (1926) Sex and the chromosomes in the domestic fowl (Gallus domesticus). Journal of Morphology and Physiology 43; reviewed in Archiv für Geflügelkunde (1927) 1: 177-178.Google Scholar
HAYS, F.A. and SAMBARDO, A.H. (1926) Physical characters in eggs in relation to hatchability. Poultry Science 6; reviewed in Archiv für Geflügelkunde (1927) 1: 317.Google Scholar
HOFFMANN, B. (2005) Geschlechtsdiagnose bei Vögeln mit Hilfe der Polymerase-Ketten-reaktion (PCR). Vet. Med. Dissertation, University of Giessen.Google Scholar
HUTT, F.B. (1927/28) Abnormal embryos in relation to mortality during incubation. Harper Adams Utility Poultry Journal 13; reviewed in Archiv für Geflügelkunde (1929) 3: 54-55.Google Scholar
KALETA, E.F., SCHILDGER, B., ENDERS, F., HERZBERGER, S. and ROSCHINSKY, M. (1994) Möglichkeiten zur Schätzung des Alters von Hühnerküken innerhalb der ersten Lebenswoche. Archiv für Geflügelkunde 58: 261-267.Google Scholar
KILNER, R.M. (2006) The evolution of egg colour and patterning in birds. Biological Reviews of the Cambridge Philosophical Society 81: 383-406.CrossRefGoogle ScholarPubMed
KLEIN, S. and ELLENDORFF, F. (2000) Localization of Xho 1 repetitive sequences on autosomes in addition to the chromosome in chickens and its relevance for sex diagnosis. Animal Genetics 31: 104-109.CrossRefGoogle Scholar
KLEIN, S., BAULAIN, U., ROTTIKA, M., MARX, G., THIELENBEIN, J. and ELLENDORFF, F. (2003) Sexing the freshly laid egg – development of embryos after manipulation; analytical approach and localization of the blastoderm in the intact egg. World's Poultry Science Journal 59: 39-45.Google Scholar
KOPEC, S. (1927) [Some data refering to size, shape, and weight of eggs in the domestic fowl]. In Polish language, reviewed in Archiv für Geflügelkunde 1: 376-377.Google Scholar
KOSBA, M.A. and EID, S.M. (1983) Phenotypic and genetic correlation between egg characters and embryo and chick weights of Alexandria and Fayoumi chickens. Beiträge zur Tropischen Landwirtschaft und Veterinärmedizin 21: 453-458.Google ScholarPubMed
KUMAR, J. and SHINGARI, B.K. (1969) Relationship of size and shape of egg with hatchability in white leghorn birds. Indian Veterinary Journal 46: 873-876.Google ScholarPubMed
LAMBERT, W.V. and KNOX, C.W. (1926) Genetic studies in poultry. I. The sex ratio in domestic fowl. Biological Bulletin 51: 225-236.CrossRefGoogle Scholar
MAO, K.M., SULTANA, F., HOWLIDER, M.A., IWASAWA, A. and YOSHIZAKI, N. (2006) The magnum-isthmus junction of the fowl oviduct participates in the formation of the avian-type shell membrane. Zoological Sciences 23: 41-47.CrossRefGoogle ScholarPubMed
MASUI, K. and HASHIMOTO, J. (1933) Sexing baby chicks. In Journal Printing Company,Vancouver B. C., Canada, cited from Phelps et al., 2003.Google Scholar
MIRSKI, A.E. and RIS, H. (1951) The desoxyribonuceic acid content of animal cells and its evolutionary significance. Journal of General Physiology 34: 451-463.CrossRefGoogle Scholar
MOLYNEUX, H.M. (1929/30) Sex determination at hatching. Harper Adams Utility Poultry Journal 15; reviewed in Archiv für Geflügelkunde (1930) 4: 129.Google Scholar
NANDI, S., MCBRIDE, D., BLANCO, R. and CLINTON, M. (2003) Sex diagnosis and sex determination. World's Poultry Science Journal 59: 8-14.Google Scholar
NICHELMANN, M. and TZSCHENSKE, B. (2002) Ontogeny of thermoregulation in precocial birds. Comparative Biochemistry and Physiology 131: 751-763.CrossRefGoogle ScholarPubMed
PHELPS, P., BHUTADA, A., BRYAN, S., CHALKER, A., FERRELL, B., NEUMAN, S., RICKS, C., TRAN, H. and BUTT, T. (2003) Automated identification of male layer chicks prior to hatch. World's Poultry Science Journal 59: 33-38.Google Scholar
PILZ, K.M., ADKINS-REGAN, E. and SCHWABL, H. (2005) No sex difference in yolk steroid concentrations of avian eggs at laying. Biological Letters 1: 318-321.CrossRefGoogle ScholarPubMed
PREISINGER, R. (2003) Sex determination in poultry – a primary breeder's view. World's Poultry Science Journal 59: 54-58.Google Scholar
PREISINGER, R. and KÜHNE, W. (1999) Legehennenzucht an der Schwelle zum nächsten Jahrtausend. 40 Jahre Legehennenzucht in Cuxhaven. Vorträge der Jubiläumstagung am 7.-8. Juli, 1999, Cuxhaven, S. 116-123.Google Scholar
PUGH, C.R., PEEBLES, E.D., PUGH, N.P. and LATOUR, A.A. (1993) Ultrasonography as a tool for monitoring in ovo chicken development. 1. Technique and morphological findings. Poultry Science 72: 2236-2246.CrossRefGoogle ScholarPubMed
ROMANOFF, A.L. (1960) The avian embryo, structural and functional development. The Macmillan Company, New York.Google Scholar
ROMANOFF, A.L. and ROMANOFF, A.J. (1972) Pathogenesis of the avian embryo. Wiley-Interscience, London.Google Scholar
RÜHLE, D.M. (2006) Untersuchungen zur Endoskopie juveniler Psittaziden unter besonderer Berücksichtigung der Geschlechtsorgane und ausgewählter biometrischer Befunde. Vet. Med. Dissertation University of Giessen.Google Scholar
SAEFUDIN, , SAAR, W., SCHMUTZ, M., PREISINGER, R. and SCHÜLER, L. (2005) Chromosomal aberrations and early embryonic mortality in laying hens. Archiv für Geflügelkunde 69: 146-150.Google Scholar
SMYTH, J.R. (1990) Genetics of plumage, skin and eye pigmentation. In: CRAWFORD, R.D. (Ed) Poultry breeding and genetics, pp. 109-167, Elsevier, Amsterdam.Google Scholar
STEFOS, K. and ARRIGHI, F.E. (1971) Heterochromatic nature o W chromosome in birds. Experimental Cell Research 68: 228-231.CrossRefGoogle Scholar
STICHNOTH, O. Jr. (1950) Anleitung zur Geschlechtsbestimmung der Eintagsküken nach der japanischen Methode. Verlag Fritz Pfenningstorff, Stuttgart und Berlin, pp. 7-9, 31, 33-72.Google Scholar
SZIELASKO, A. (1905) Die Gestalt der Vogeleier. Journal für Ornithologie 53: 273-297.CrossRefGoogle Scholar
TAKAGI, N. and SASAKI, M. (1974) A phylogenetic study of bird karyotypes. Chromosoma 46, 91-120.CrossRefGoogle ScholarPubMed
THOMPSON, J.B., WILSON, H.R. and VOITLE, R.A. (1976) Influence of high temperature stress of 16-day embryos on subsequent hatchability. Poultry Science 55: 892-894.CrossRefGoogle Scholar
TIERSCH, T.R. (2003) Identification of sex in chickens by flow cytometry. World's Poultry Science Journal 59: 25-32.Google Scholar