Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T23:16:27.510Z Has data issue: false hasContentIssue false

Application of mixed model methodology in breeding strategies for laying fowl

Published online by Cambridge University Press:  18 September 2007

S. Weżyk
Affiliation:
Department of Poultry Breeding, National Institute of Animal Husbandry, Cracow, Poland
T. Szwaczkowski
Affiliation:
Department of Genetics and Animal Breeding, Agricultural University, Poznan, Poland
Get access

Abstract

The main objective of this review is to present the advantages and disadvantages of applying the best linear unbiased prediction (BLUP) procedure with an animal model to the evaluation of laying fowl within a breeding programme. Following an outline of the traditional selection index-based procedure there are descriptions of mixed model methodology including modelling and data transformation, genetic parameter estimation and breeding value prediction. Some computer programs for carrying out BLUP animal model algorithms are described and the results of empirical and simulation comparisons involving different livestock species are given. New possibilities arising from the application of the animal model to breeding strategy are discussed. Poultry breeding evaluations using the traditional selection index do not always result in the same conclusions as arise when using BLUP. However it seems likely that, as has happened with other livestock species, the BLUP animal model method will be increasingly applied in breeding programmes to improve egg production.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abplanalp, H. (1993) Inbreeding. In: Poultry Breeding and Genetics (Ed. Crawford, R.D.), Elsevier, Amsterdam, pp. 955984Google Scholar
Barbato, G.F., Siegel, P.B. and Cherry, J.A. (1983) Selection for body weight at 8 weeks of age. Poultry Science 62: 19441948CrossRefGoogle Scholar
Barillet, F., Boichard, D., Barbat, A., Astrue, J.M. and Bonaiti, B. (1992) Use of an animal model for genetic evaluation of the Lacaune dairy sheep. Livestock Production Science 31: 287299CrossRefGoogle Scholar
Beaumont, C. (1991) Comparison of Henderson's method I and restricted maximum likelihood estimation of genetic parameters of reproductive traits. Poultry Science 70: 14621468Google Scholar
Besbes, B., Ducrocq, V., Foulley, J.L., Protais, M., Tavernier, A., Tixer-Boichard, M. and Beaumount, C. (1992) Estimation of genetic parameters of egg production traits of laying hens by restricted maximum likelihood applied to a multiple-trait reduced animal model. Genetics Selection Evolution 24: 539552CrossRefGoogle Scholar
Besbes, B., Ducrocq, V., Foulley, J.L., Protais, M., Tavernier, A., Tixer-Boichard, M. and Beaumont, C. (1993) Box-Cox transformation of egg production traits of laying hens to improve genetic parameter estimation and breeding evaluation. Livestock Production Science 33: 313326Google Scholar
Boldman, K.G., Kriese, L.A., Van Vleck, L.D. and Kachman, S.D. (1993) A Manual for use MTDFREML, USDA-ARS, Clay Centre, NebraskaGoogle Scholar
Box, G.E.P. and Cox, D.R. (1964) An analysis of transformations. Journal of the Royal Statistical Society, Series B 26: 211243Google Scholar
Brodacki, A., Zieba, G. and Wężyk, S. (1996) Porównanie metod szacowania wspólczynników odziedziczalności cech uŻytkowych kur. Roczniki Naukowe Zootechniki 23: 8794 (with English summary)Google Scholar
Carroll, R. J. (1980) A robust method for testing transformations to achieve approximate normality. Journal of the Royal Statistical Society, Series B 42: 7180Google Scholar
Clayton, G. A. (1975) Normality of egg production in poultry. British Poultry Science 16: 431439Google Scholar
Dempfle, L. and Grund, E. (1988) Identification of superior animals and their use in improvement programmes. Advances in Animal Breeding, Pudoc Wageningen, 5672Google Scholar
Dempster, A.P., Laird, N.M. and Rubin, R.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39: 122Google Scholar
Fairfull, R.W., Gowe, R.S. and Nagai, J. (1987) Dominance and epistasis in heterosis of White Leghorn strain crosses. Canadian Journal of Animal Science 67: 663680Google Scholar
Golden, B.L., Snelling, M.W. and Mallinckrodt, C.H. (1992) Animal Breeders' Took-Kit. User's Guide, Colorado State UniversityGoogle Scholar
Graml, R. and Pirchner, F. (1993) Epistasis as cause of heterosis in layer breed cross. 46th Annual Meeting of European Association for Animal Production,16–19 August 1993,Aurhus, Denmark, p. 249Google Scholar
Graser, H.U., Smith, S.P. and Tie, B. (1987) A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood. Journal of Animal Science 64: 13621370CrossRefGoogle Scholar
Groenveld, E. (1993) PEST User's Manual, Institute of Animal Husbandry and Animal Behaviour, Federal Agricultural Research Centre, GermanyGoogle Scholar
Hagger, C. (1992) Two generations of selection on restricted best linear unbiased prediction breeding values for income minus feed cost in laying hens. Journal of Animal Science 70: 20452052Google Scholar
Hartmann, W. (1989) From Mendel to multi-national in poultry breeding. World's Poultry Science journal 45: 526CrossRefGoogle Scholar
Hartmann, W. (1992) Evaluation of the potentials of new scientific developments for commercial poultry breeding. World's Poultry Science Journal 48: 1727CrossRefGoogle Scholar
Hazel, L. N. (1943) The genetic basis for constructing selection indexes. Genetics 28: 476490CrossRefGoogle ScholarPubMed
Henderson, C. R. (1949) Estimation of changes in herd environment. Journal of Dairy Science 32: 706721Google Scholar
Henderson, C. R. (1953) Estimation of variances and covariances components. Biometrics 39: 465477Google Scholar
Henderson, C. R. (1976) A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding value. Biometrics 32: 6983CrossRefGoogle Scholar
Henderson, C.R. (1980) A simple method for unbiased estimation of variance components in mixed model. Journal of Animal Science 51(Suppl. 1): 119Google Scholar
Henderson, C. R. (1988) Theoretical basis and computational methods for a number of different animal models. Journal of Dairy Science 71(Suppl. 2): 116Google Scholar
Hoeschele, I. and Van Raden, P. M. (1991) Rapid inversion of dominance relationship matrices for noninbred populations by including sire by dam subclass effects. Journal of Dairy Science 74: 17431752CrossRefGoogle ScholarPubMed
Hudson, G. F. S. and Schaeffer, L. R. (1984) Monte Carlo comparison of sire evaluation models in population subject to selection and nonrandom mating. Journal of Dairy Science 67: 12641275Google Scholar
Ibe, S.N. and Hill, W.G. (1988) Transformation of poultry egg production data to improve normality, homoscedastity and linearity of genotypic regression. Journal of Animal Breeding and Genetics 105: 321340CrossRefGoogle Scholar
Jamrozik, J. (1992) Ocena wartości hodowlanej buhajów i kr⊙w w obrebie stada przy użyciu modelu zwierzecia. Zeszyty Naukowe AR, Kraków 172: (with English summary)Google Scholar
Jensen, J. and Madsen, P. (1995) A package for analysing multivariate mixed models DMU. User's Guide. National Institute of Animal Science, Research Centre Foulum, DenmarkGoogle Scholar
Jeyaruban, M. G., Gibson, J. P. and Gowe, R. S. (1995) Comparison of index selection and best linear unbiased prediction for simulated layer poultry data. Poultry Science 74: 15661576Google Scholar
Kasznica, E., Cywa-Benko, K., Wężyk, S., Furmaniak, J. (1988) Badania nad zachowaniem rezenvy genetycznej róinych ras kur niesnych w PGR Szczytno. Roczniki Nauk Rolniczych, B 104: 105123 (with English summary)Google Scholar
Kennedy, B. W. (1989) Animal Model – BLUP, Erasmus Intensive Graduate Course, Trinity College, DublinGoogle Scholar
Koerhuis, A. N. M. (1996) Non-normality of egg production distributions in poultry and the effects of outlier elimination and transformation on size curvilinearity of heritability. Livestock Production Science 45: 6985CrossRefGoogle Scholar
Koerhuis, A. N. M. and McKay, J. C. (1996) Restricted maximum likelihood estimation of genetic parameters for egg production traits in relation to juvenile body weight in broiler chickens. Livestock Production Science 46: 117127CrossRefGoogle Scholar
La Motte, L. R. (1973) Quadratic estimation of variance components. Biometrics 29: 311330Google Scholar
Liu, G., Dunnington, E. A. and Siegel, P. B. (1993) Maternal effects and heterosis for growth in reciprocal cross populations of chicken. Journal of Animal Breeding and Genetics 110: 423428Google Scholar
Malik, S., Varma, S.K. and Gupta, U.D. (1991) Genetic association of growth, production and feed efficiency traits in IWH strain of White Leghorn. Indian Journal of Animal Sciences 61: 215217Google Scholar
Mao, I.L. (1982) Modelling and Data Analysis in Animal Breeding. Notes for an Internordic Postgraduate Course, Uppsala, SwedenGoogle Scholar
Mera, P. (1993) Pleoitropic and associated effects of major genes. In: Poultry Breeding and Genetics (Ed. Crawford, R. D.), Elsevier, Amsterdam, 429468Google Scholar
Meyer, K. (1989) Restricted maximum likelihood to estimate variance components for animal models with several random effects using a derivative-free algorithm. Genetics. Selection, Evolution 21: 317340Google Scholar
Meyer, K. (1993) Programs to estimate variance components for individual animal model by Restricted Likelihood Maximum. User NotesGoogle Scholar
Mielenz, N., Groeneveld, E., Muller, J. and Spilke, J. (1994) Simultaneous estimation of variances and covariances using REML and Henderson 3 in a selected population of White Leghorns. British Poultry Science 35: 669676CrossRefGoogle Scholar
Mielenz, N., Van Arendonk, J., Spilke, J. and Schuler, L. (1996) Überlegenheit von BLUP bei der multivariaten Zuchtwertschatzung in Geflugelzuchtprogrammen – eine Monte Carlo Studie. Archiv für Tierzucht 39: 6980Google Scholar
Misztal, I., Gianola, D. and Schaeffer, L. R. (1987) Extrapolation and convergence criteria with Jacobi and Gauss-Seidel iteration in animal models. Journal of Dairy Science 70: 25772584Google Scholar
Misztal, I. (1992) JAA- Mixed model program using iteration on data with support for animal model. User's notes. University of Illinois, USAGoogle Scholar
Misztal, I. (1994) Comparison of software packages in animal breeding. Proceedings of the 5th Worl Congress on Genetics Applied to Livestock Production,August 7–12,Guelph,310Google Scholar
Molinska, A., Molinski, K. and Szwaczkowski, T. (1994) Estimation of sire and dam variance components in an animal model on laying hen data. Animal Science Papers and Reports 12: 109116Google Scholar
Mou, L. J. (1991) Effects of different environmental and selection for persistence in laying hens. Poultry Abstracts 17: 375Google Scholar
Patterson, H. D. and Thompson, R. (1971) Recovery of interblock information when block sizes are unequal. Biometrika 58: 545554CrossRefGoogle Scholar
Pollak, E. J., Werf, J. VAN DER and Quaas, R. L. (1984) Selection bias and multiple trait evaluation. Journal of Dairy Science 67: 15901595CrossRefGoogle Scholar
Pribil, J. and Pribilova, J. (1991) The use of BLUP method for the construction of selection indexes in egg laying poultry. Scientia Agriculturae Bohemoslovaca, 23: 135144Google Scholar
Quaas, R.L. (1976) Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics 32: 949953CrossRefGoogle Scholar
Quaas, R. L. and Pollak, E. J. (1980) Mixed model methodology for farm and ranch beef cattle testing programs. Journal of Animal Science 58: 10971106Google Scholar
Rao, C. R. (1971 a) Estimation of variance components – MINQUE theory. Journal of Multivariate Analysis 1: 257275Google Scholar
Rao, C. R. (1971 b) Minimum variance quadratic unbiased estimation of variance components. Journal of Multivariate Analysis 1: 445456Google Scholar
Rendel, J. M. and Robertson, A. (1950) Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle. Journal of Genetics 54: 18Google Scholar
Robinson, J. A. B., Wilton, J. W. and Schaeffer, L. R. (1989) Accuracy of selection index and best linear unbiased prediction for within-herd selection with assortative mating of beef cattle. Canadian Journal of Animal Science 69: 31063119Google Scholar
Schaeffer, L. R. (1986) Pseudo expectation approach to variance component estimation. Journal of Dairy Science 69: 2894–2889CrossRefGoogle Scholar
Schultz, M.M., Freeman, A. E., Lindberg, G. L., Koehler, C. M. and Beitz, D. C. (1994) The effect of mitochondria1 DNA on milk production and health of dairy cattle. Livestock Production Science 37: 283295Google Scholar
Shi, M. J. (1993) Estimation of direct and maternal variability of preweaning traits in beef cattle: application to field data of French beef breeds. Ph.D. Thesis, Institut National de la Recherche Agronomique, Station de Genetique Quantitative et Appliquke, Paris-GrignonGoogle Scholar
Simianer, H. and Gjerde, B. (1991) Estimation variance components from fullsib group means. Journal of Animal Breeding and Genetics 108: 270279Google Scholar
Sorensen, D.A. (1988) Effect of selection index versus mixed model methods of prediction of breeding value on response to selection in a simulated pig population. Livestock Production Science 20: 135148Google Scholar
Spilke, J. and Mielenz, N. (1992) Simultationsuntersuchungen zur Varianz-Kovarianzkompo-nentenschatzung in gemischten linearen Modellen – Vergleich verschiedener Methoden und Populationsgrossen beim Legehuhn. Archiv fiir Tierzucht 35: 413420Google Scholar
Szewczyk, A., Bragiel, B. (1981) Elektroniczne przetwarzanie danych w hodowli drobiu – System SELEKT. Instytut Zootechniki, Zaklad Informacji Zootechnicznej, PWRiL, Warszawa, 9: 3351 (with English summary)Google Scholar
Szwaczkowski, T. (1995) Analiza genetycznego uwarunkowania wybranych cech użytkowych kur nieśnych. Roczniki AR w Poznaniu, 260 (with English summary)Google Scholar
Szwaczkowski, T., Wężyk, S. and Cywa-Benko, K. (1997) Animal model vs classical selection index in the breeding value estimation of laying hens. Animal Science Papers and Reports 15: 4753Google Scholar
Tavernier, A. (1988) Advantages of BLUP Animal Model for breeding value estimation in horses. Livestock Production Science 20: 149160CrossRefGoogle Scholar
Thompson, R. and Meyer, K. (1986) A review of theoretical aspects in the estimation of breeding values for multitrait selection. Livestock Production Science 15: 299313Google Scholar
Van Raden, P. M. and Jung, Y. C. (1988) A general purpose approximation to restricted maximum likelihood: The tilde-hat approach. Journal of Dairy Science 71: 187194Google Scholar
Van Raden, P.M. and Hoeschele, I. (1991) Rapid inversion of additive by additive relationship matrices by including sire-dam combination effects. Journal of Dairy Science 74: 570579Google Scholar
Van Raden, P. M., Lawlor, T. J., Short, T. H. and Hoeschele, I. (1992) Use of reproductive technology to estimate variances and predict effects of gene interactions. Journal of Dairy Science 75: 28922901Google Scholar
Wei, M. and Werf, J. H. J. VAN DER (1993) Animal model estimation of additive and dominance variances in egg production traits of poultry. Journal of Animal Science 71: 5765Google Scholar
Westell, R. A. and Van Vleck, L. D. (1987) Simultaneous genetic evaluation of sires and cows for large population of dairy cattle. Journal of Dairy Science 70: 10061018Google Scholar
Wężyk, S. (1970) Wyniki pracy selekcyjnej prowadzonej prowadzonej w ciagu szeregu pokoleń w zamknietym stadzie kur. Wydawnictwa Instytutu Zootechniki, Kraków (with English summary)Google Scholar
Wężyk, S. (1978) System SELEKT dla stad sarodowych drobiu. Wyniki Prac Badawczych Zakladu Hodowli Drobiu za lata 1974–76. Instytut Zootechniki 7: 718 (with English summary)Google Scholar
Wężyk, S. and Szewczyk, A. (1993) Próba zastosowania modelu zwierzecia w ocenie wartości hodowlanej kur nieśnych. Roczniki Naukowe Zootechniki 20: 3949Google Scholar
Wood, C. M., Christian, L. L. and Rostschild, M. F. (1991) Evaluation of performance-tested boars using a single-trait animal model. Journal of Animal Science 69: 31443155CrossRefGoogle ScholarPubMed