Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T17:28:38.406Z Has data issue: false hasContentIssue false

Egg components, lipid fraction and fatty acid composition of Creole and Plymouth Rock×Rhode Island Red cross hens fed with three diets

Published online by Cambridge University Press:  21 September 2007

J.C. GARCÍA-LÓPEZ*
Affiliation:
Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí. Altaír 200, Fracc. del Llano, C.P. 78377, San Luis Potosí, S.L.P.México
M.E. SUÁREZ-OPORTA
Affiliation:
Colegio de Postgraduados en Ciencias Agrícolas, México
J.M. PINOS-RODRÍGUEZ
Affiliation:
Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí. Altaír 200, Fracc. del Llano, C.P. 78377, San Luis Potosí, S.L.P.México
G. ÁLVAREZ-FUENTES
Affiliation:
Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí. Altaír 200, Fracc. del Llano, C.P. 78377, San Luis Potosí, S.L.P.México
*
*Corresponding author: [email protected]
Get access

Abstract

27 Creole and 27 Plymouth Rock×Rhode Island Red hens (cross) 47 months old were used to estimate the effect of three diets; commercial diet, corn+alfalfa and homemade diet on egg weight, white, yolk, egg shell, dry matter, protein, fat and ash content of the yolk; lipid fraction and fatty acid profile of the yolk was estimated too. Eggs were collected at 53 weeks of age, 30 eggs per treatment were randomly selected for laboratory analysis. No differences (P>0.05) were found on egg, white, yolk and egg shell weight between genetic groups; inside groups there was a significant effect of diet on yolk weight in both groups. There was no effect of diet and genetic group on yolk composition (P>0.05); however there was a trend of less content of dry matter and more ash with the homemade diet in both groups. There was a group effect (P<0.05) on cholesterol, cholesterol esters and lecithin content; inside groups there was a diet effect (P<0.05) on total lipid content and triglycerides. No differences (P>0.05) between groups were found for the fatty acid profile; inside groups stearic acid was higher (P<0.05) in the yolk of hens fed with no commercial diet and linoleic acid percentage was higher (P<0.05) with corn plus alfalfa diet. Results indicated that corn+alfalfa and homemade diet seem to alter the egg components, yolk lipids and fatty acid profile.

Type
Small Scale Family Poultry Production
Copyright
Copyright © World's Poultry Science Association 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AHN, D.V., SUNWOO, H.H., WOLFE, F.H. and SIM, J.S. (1995) Effects of dietary alpha linolenic acid and strains of hen on fatty acid composition, storage stability, and flavor characteristics of chicken eggs. Poultry Science 74: 15401547.Google Scholar
AOAC (1990) Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, D.C.1298 p.Google Scholar
AWAD, A.C., BENNIK, M.R. and SMITH, D.M. (1997) Composition and functional properties of cholesterol reduced egg yolk. Poultry Science 76: 649653.CrossRefGoogle ScholarPubMed
CHERIAN, G. and SIM, J.S. (1991) Effect of feeding full fat flax and canola seeds to laying hens on the fatty acid composition of eggs, embryos, and newly hatched chicks. Poultry Science 70: 917922.CrossRefGoogle Scholar
CHERIAN, G. and SIM, J.S. (1992) Preferential accumulation of w-3 fatty acids in the brain of chicks from eggs enriched with w-3 fatty acids. Poultry Science 71: 16581668.Google Scholar
DING, S.T. and LILBURN, M.S. (1997b) Inclusion of coconut oil in diets for turkey breeders and its effects on embryonic yolk and liver fatty acids. Poultry Science 76: 17141721.Google Scholar
DUARTE, L.J. (1986) Evaluación del programa de paquetes familiares en una comunidad rural. Tesis de Maestría, Colegio de Posgraduados. Montecillo Edo. de México. 199 p.Google Scholar
EDWARDS, H.M. (1964) The influence of breed and or strain on the fatty acid composition of egg lipids. Poultry Science 43: 751754.Google Scholar
FOLCH, J., LEES, M. and SLOANE-STANLEY, G.H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. Journal Biological Chemistry 226: 497509.Google Scholar
HALL, L.M. and MCKAY, J.C. (1992) Variation in egg yolk cholesterol concentration between and within breeds of the domestic fowl. British Poultry Science 33: 941946.CrossRefGoogle ScholarPubMed
HARGIS, P.S. (1988) Modifying egg yolk cholesterol in the domestic fowl. World's Poultry Science Journal 44: 1727.CrossRefGoogle Scholar
INEGI (1998) La ganadería familiar en México. Editorial Instituto Nacional de Estadística Geografía e Informática. México. 96 p.Google Scholar
IZQUIERDO, E.C.E. (1994) Crecimiento y postura de gallinas criollas portadoras del gen cuello desnudo bajo condiciones de trópico seco. Tesis Doctoral. Fac. Ciencias Biológicas, Universidad de Colima. México.137 p.Google Scholar
JERÉZ, S.M.P., HERRERA, H.J.G. and VÁZQUEZ, D.M.A. (1994) La gallina criolla en los Valles Centrales de Oaxaca. Reporte de Investigación No. 1, Instituto Tecnológico Agropecuario de Oaxaca No. 23-CIGA. México. 89 p.Google Scholar
JIANG, Z., AHN, D.U. and SIM, J.S. (1991) Effects of feeding flax and two types of sunflower seeds on fatty acids compositions of yolk lipids classes. Poultry Science 70: 24672475.CrossRefGoogle Scholar
NOBLE, R.C. and MOORE, J.H. (1964) Studies on the lipid metabolism of the chick embryo. Canadian Journal Biochemistry 42: 17291741.CrossRefGoogle ScholarPubMed
NOBLE, R.C., LOONSDALE, F., CONNOR, K. and BROWN, D. (1986) Changes in the lipid metabolism of the chick embryo with parental age. Poultry Science 65: 409416.Google Scholar
SAS INSTITUTE (1991) SAS User's Guide: Statistics. SAS Institute Inc., Cary, NC. 1028 p.Google Scholar
SEGURA, C.J.C. (1998a) Situación de los recursos genéticos avícolas en México. Memoria del tercer foro de análisis de los recursos genéticos: ganadería ovina, caprina, porcina, avícola, apícola, equina y de lidia. México, D.F. p 3744.Google Scholar
SCHEIDELER, S.E., JARONI, D. and, FRONING, G. (1998) Strain and age effects on egg composition from hens fed diets rich in n-3 fatty acids. Poultry Science 77: 192196.Google Scholar
SHAFEY, T.M., DINGLE, J.D. and MCDONALD, M.W. (1992) Comparison between wheat, triticale, rye, soybean oil and strain laying bird on the production, and cholesterol and fatty acid contents of eggs. British Poultry Science 33: 339346.CrossRefGoogle ScholarPubMed
SHELDON, B.L. (2000) Research and development in 2000: Directions and priorities for the World's Poultry Science Community. Poultry Science 79: 147158.Google Scholar
SHELDON, B.L. (1998) Poultry and poultry products as resources for human health and food in the 21st Century. In: Proceedings 6th Asian Pacific Poultry. Congress, WPSA, Nagoya, Japan. Pages 18.Google Scholar
SHELDON, B.L. (1993) Opportunities and challenges for application of poultry science and technology into the 21st Century. In: Proc. 5th conf. For East and South Pacific Fed, WPSA, Seoul Korea. Pages 1725.Google Scholar
SHERIDAN, A.K., HUMPHRIS, C.S.M. and NICHOLINP, J. (1982) The cholesterol content of eggs produced by Australian egg laying strains. British Poultry Science 23: 569575.Google Scholar
STADELMAN, W.J. and COTTERILL, O.J. (1977) Egg Science and Technology. AVI, Wesport, CT. 355p.Google Scholar
STURKIE, P.D. (1986) Avian physiology. Fourth Edition. Springer-Verlag New York Berlin Heidelberg Tokyo. 516 p.Google Scholar
VILCHEZ, C., TOUCHBURN, S.P.CHAVEZ, E.R. and CHAN, C.W. (1991) Effect of feeding palmitic, oleic, and linoleic acids to quail (Coturnix coturnix japonica). 1. Reproductive performance and tissue fatty acids. Poultry Science 70: 24842493.Google Scholar
VILCHEZ, C., TOUCHBURN, S.P., CHAVEZ, E.R. and CHAN, C.W. (1990b) Dietary palmitic and linoleic acids and reproduction of Japanese quail (Coturnix coturnix japonica). Poultry Science 69: 19221930.Google Scholar
WASHBURN, K.W. and NIX, D.F. (1974) Genetic basis of yolk cholesterol content. Poultry Science 53: 109115.Google Scholar