Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T04:54:56.556Z Has data issue: false hasContentIssue false

Spiral resonators for optimally efficient strongly coupled magnetic resonant systems

Published online by Cambridge University Press:  21 March 2014

Olutola Jonah
Affiliation:
Department of Electrical and Computer Engineering, Florida International Univiersity, Miami, FL 33172, USA. Phone: +1(305) 348-1262
Arvind Merwaday
Affiliation:
Department of Electrical and Computer Engineering, Florida International Univiersity, Miami, FL 33172, USA. Phone: +1(305) 348-1262
Stavros V. Georgakopoulos*
Affiliation:
Department of Electrical and Computer Engineering, Florida International Univiersity, Miami, FL 33172, USA. Phone: +1(305) 348-1262
Manos M. Tentzeris
Affiliation:
The School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332-0250, USA
*
Corresponding author: S. V. Georgakopoulos Email: [email protected]
Get access

Abstract

The wireless efficiency of the strongly coupled magnetic resonance (SCMR) method greatly depends on the Q-factors of the TX and RX resonators, which in turn are strongly dependent on the geometrical parameters of the resonators. This paper analytically derives the equations that can be used to design optimal spiral resonators for SCMR systems. In addition, our analysis illustrates that under certain conditions globally maximum efficiency can be achieved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd ed., Wiley, New York, 2003, 65112.CrossRefGoogle Scholar
[2]Nikitin, P.V.; Rao, K.V.S.; Lazar, S.: An overview of near field UHF RFID, in Proc. RFID IEEE Int. Conf., March 2007, 167–174.CrossRefGoogle Scholar
[3]Vandevoorde, G.; Puers, R.: Wireless energy transfer for standalone systems: a comparison between low and high energy applicability. Sens. Actuators A: Phys., 92 (1–3) (2001), 305311.Google Scholar
[4]Balanis, C.A.: Antenna Theory: Analysis and Design, chapter 5, Wiley, New Jersey, 2005,.Google Scholar
[5]Mazlouman, S.J.; Mahanfar, A.; Kaminska, B.: Mid-range wireless energy transfer using inductive resonance for wireless sensors, in Proc. IEEE Int. Conf. on Computer Design, IEEE Press, Piscataway, NJ, USA, 2009, 517–522.Google Scholar
[6]Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljacic, M.: Wireless energy transfer via strongly coupled magnetic resonances. Science, 317 (2007), 8385.Google Scholar
[7]Kurs, A.; Karalis, A.; Moffatt, R.; Soljacic Marin, M.: Simultaneous midrange power transfer to multiple devices. Appl. Phys. Lett., 96 (2010), 044102.Google Scholar
[8]Karalis, A.; Joannopoulos, J.D.; Soljacic, M.: Efficient wireless non-radiative mid-range energy transfer. Ann. Phys., 323 (2008), 3448.Google Scholar
[9]Joannopoulos, D.; Karalis, A.; Soljacic, M.: Wireless non-radiative energy transfer. US Patent 20070222542, September 2007.Google Scholar
[10]Cook, N.P.; Meier, P.; Sieber, L.; Secall, M.; Widmer, H.: Wireless energy apparatus and method. US Patent 20080211320, September 2008.Google Scholar
[11]Karalis, A.; Kurs, A.; Moffat, R.; Joannopoulos, D.; Fisher, P.H.; Soljacic, M.: Wireless energy transfer. US Patent 20110193419A1, August 2011.Google Scholar
[12]Mohan, S.S.; Hershenson, M.M.; Boyd, S.P.; Lee, T.H.: Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits, 34 (10) (1999).Google Scholar
[13]Joannopoulos, D.; Karalis, A.; Soljacic, M.: Wireless energy transfer systems. US Patent 2010/0141042 A1, September 2010.Google Scholar
[14]Smith, G.: The proximity effect in systems of parallel conductors and electrically small multi-turn loop antennas. [Online]. Available: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0 736984.Google Scholar
[15]Jow, U.-M.; Ghovanloo, M.: Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans. Biomed. Circuits Syst., 1 (3) (2007), 193202.Google Scholar
[16]Klein, A.; Katz, N.: Strong coupling optimization with planar spiral resonators. Curr. Appl. Phys., 11 (5) (2011), 11881191, ISSN 1567-1739.Google Scholar
[17]Cannon, B.L.; Hoburg, J.F.: Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron., 24 (7) (2009), 1819, 1825.Google Scholar