Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T19:58:38.607Z Has data issue: false hasContentIssue false

Solar/EM energy harvester for autonomous operation of a monitoring sensor platform

Published online by Cambridge University Press:  21 March 2014

Kyriaki Niotaki*
Affiliation:
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain. Phone: +34 936452900
Francesco Giuppi
Affiliation:
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain. Phone: +34 936452900
Apostolos Georgiadis
Affiliation:
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain. Phone: +34 936452900
Ana Collado
Affiliation:
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain. Phone: +34 936452900
*
Corresponding author: K. Niotaki Email: [email protected]
Get access

Abstract

In this paper, a hybrid solar/electromagnetic (EM) energy harvester that operates at 2.45 GHz is presented. The proposed harvester integrates the solar cells in the same area as the rectenna element obtaining a compact implementation. The radiating element that forms part of the rectenna is a cavity-backed slot antenna based on substrate-integrated waveguide technology, which allows for a compact, single substrate implementation. The radiating element is connected to a circuit that provides both the rectification of the incoming EM signals and the collection of DC energy coming from solar cells. A single-substrate prototype has been implemented, demonstrating an overall power conversion efficiency up to 30%, depending on the incoming radio frequency signal level and the ambient light conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Georgiadis, A.; Andia-Vera, G.; Collado, A.: Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting. IEEE Antennas Wirel. Propag. Lett., 9 (2010), 444446.Google Scholar
[2]Hagerty, J.A.; Helmbrecht, F.B.; McCalpin, W.H.; Zane, R.; Popovic, Z.B.: Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Transact. Microw. Theory Techn., 52 (3) (2004), 10141024.Google Scholar
[3]Rizzoli, V.; Bichicchi, G.; Costanzo, A.; Donzelli, F.; Masotti, D.: CAD of multi-resonator rectenna for micro-power generation, in Proc. EuMC, Rome, Italy, October 2009, 1684–1687.Google Scholar
[4]Guenda, L.; Collado, A.; Carvalho, N.B.; Georgiadis, A.; Niotaki, K.: Electromagnetic geo-referenced footprints for energy harvesting systems, in 2012 IEEE Radio and Wireless Symp. (RWS), 15–18 January 2012, 339, 342.Google Scholar
[5]Vyas, R.; Nishimoto, H.; Tentzeris, M.; Kawahara, Y.; Asami, T.: A battery-less, energy harvesting device for long range scavenging of wireless power from terrestrial TV broadcasts, in 2012 IEEE MTT-S Int. Microwave Symp. Digest (MTT), 17–22 June 2012, 1, 3.Google Scholar
[6]Georgiadis, A.; Collado, A.; Via, S.; Meneses, C.: Flexible hybrid solar/EM energy harvester for autonomous sensors, in Proc. 2011 IEEE MTT-S Intl. Microwave Symp. (IMS), Baltimore, US, June 5–10, 2011.Google Scholar
[7]Collado, A.; Georgiadis, A.: Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna. IEEE Transact. Circuits Syst. I, 60 (8) (2013), 22252234.Google Scholar
[8]Shinohara, N.: Power without wires. IEEE Microw. Mag., 12 (7) (2011), S64S73.Google Scholar
[9]Shinohara, N.; Matsumoto, H.: Dependence of DC output of a rectenna array on the method of interconnection of its array elements. Wiley Electr. Eng. Japan, 125 (1) (1998), 917.Google Scholar
[10]Popovic, Z.: Wireless powering of battery-less sensors through low power RF energy harvesting, in Workshop on RF Energy Harvesting: Challenges and Applications, 2014 Radio Wireless Week (RWW), Newport Beach, 19–22 January 2014.Google Scholar
[11]Giuppi, F.; Georgiadis, A.; Collado, A.; Bozzi, M.: A compact, single-layer substrate integrated waveguide (SIW) cavity-backed active antenna oscillator. IEEE Antennas Wirel. Propag. Lett., 11 (2012), 431433.Google Scholar
[12]Giuppi, F.; Georgiadis, A.; Bozzi, M.; Collado, A.; Perregrini, L.: Active antenna oscillator systems in substrate integrated waveguide (SIW) technology, in EuCAP, Barcelona, ES, April 2010.Google Scholar
[13]Danesh, M.; Long, J.R.: Photovoltaic antennas for autonomous wireless systems. IEEE Trans. Circuits Syst. II, Exp. Briefs, 58 (12) (2011), 807811.Google Scholar
[14]Tanaka, M.; Suzuki, R.; Suzuki, Y.; Araki, K.: Microstrip antenna with solar cells for microsatellites. in Proc. IEEE Int. Symp. Antennas Propagation (AP-S), vol. 2, January 20–24, 1994, 786–789.Google Scholar