Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T02:10:07.864Z Has data issue: false hasContentIssue false

Sidelobe reduction with a GaN active array antenna

Published online by Cambridge University Press:  21 November 2017

Naoki Hasegawa*
Affiliation:
Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. Phone: +81 774 38 3853
Naoki Shinohara
Affiliation:
Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. Phone: +81 774 38 3853
*
Corresponding author: N. Hasegawa Email: [email protected]
Get access

Abstract

This work proposes a tunable sidelobe reduction method based on a GaN active-antenna technique, in which the output radio frequency power is controlled by the DC drain voltage of the amplifiers. In this study, a 1 × 4 array of active antenna with GaN amplifiers is designed and fabricated. GaN amplifiers capable of up to 10 W-class power output are fabricated and arranged for a four-way active-array antenna. The fabricated single-stage GaN amplifier offers a maximum power-added efficiency of 59.6% and a maximum output power of 39.3 dBm. The maximum output power is decreased to 36.5 dBm upon decreasing the operating drain voltage from 55 to 35 V. In this study, a 4.5 dB sidelobe reduction is demonstrated in a 1 × 4 active antenna based on this output power difference for each amplifier.

Type
Wirelessly Powering: The Future
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Takano, T.: Wireless power transfer from space to earth. IEICE Trans. Electron., E96-C (10) (2012), 12181226.Google Scholar
[2] Ishikawa, T.; Shinohara, N.: Flat-topped forming experiment for microwave power transfer system to a vehicle roof. Wireless Power Transf., 2 (1) (2015), 1521.Google Scholar
[3] Yoshida, S.; Hasegawa, N.; Kawasaki, S.: The aerospace wireless sensor network system compatible with microwave power transmission by time- and frequency-division operations. Wireless Power Transf., 2 (2) (2015), 314.Google Scholar
[4] Kanto, K.; Satomi, A.; Asahi, Y.; Kashiwabara, Y.; Matsushita, K.; Takagi, K.: An X-band 250W solid-state power amplifier using GaN power HEMTs, in Proc. IEEE Radio Wireless Symp., Orland, FL, June 2008, 7780.Google Scholar
[5] Casto, M. et al. 100 W X-band GaN SSPA for medium power TWTA replacement, in Proc. IEEE Wireless Microwave Technology Conf. Clearwater Beach, FL, April 2011, 1–4.Google Scholar
[6] Jeong, H.C.; Yeom, K.W.: A miniaturized 2.5 GHz 8 W GaN HEMT power amplifier module using selectively anodized aluminum oxide substrate. IEICE Trans. Electron., E95-C (10) (2012), 15801588.Google Scholar
[7] Jeong, H.C.; Yeom, K.W.: A design of X-band 40 W pulse-driven GaN HEMT power amplifier. IEICE Trans. Electron., E96-C (6) (2013), 923934.Google Scholar
[8] Yamashita, Y.; Nakada, T.; Kumamoto, T.; Suzuki, R.; Tanabe, M.: X-band GaN HEMT advanced power amplifier unit for compact active phased array antennas, in Proc. ICCAS-SICE, Aug. 2009, 30473050.Google Scholar
[9] Seita, H.; Kawasaki, S.: Compact and high p-power, spatial power combiner by active integrated antenna technique at 5.8 GHz. IEICE Trans. Electron., E91-C (11) (2008), 17571764.Google Scholar
[10] Maeda, M. et al. Source second-harmonic control for high efficiency power amplifiers. IEEE Trans. Microw. Theory Tech., 43 (12) (1995), 29522958.Google Scholar
[11] Woo, Y.Y.; Yang, Y.; Kim, B.: Analysis and experiments for high-efficiency class-F and inverse class-F power amplifier. IEEE Trans. Microw. Theory Tech., 54 (5) (2006), 19691974.Google Scholar
[12] Colantonio, P. et al. A C-band high-efficiency second-harmonic-tuned hybrid power amplifier in GaN technology. IEEE Trans. Microw. Theory Tech., 54 (6) (2006), 27132722.Google Scholar
[13] Grebennikov, A.: High-efficiency transmission-line GaN HEMT inverse class F power amplifier for active antenna arrays, in Proc. APMC, December 2009, 317320.Google Scholar
[14] Jeong, H.C.; Oh, H.S.; Yeom, K.W.: A miniaturized WiMAX band 4-W class-F GaN @HEMT power amplifier module. IEEE Trans. Microw. Theory Tech., 59 (12) (2011), 31843194.Google Scholar
[15] Chen, K.; Peroulis, D.: Design of broadband highly efficient harmonic-tuned power amplifier using in-band continuous class-F-1/F mode transferring. IEEE Trans. Microw. Theory Tech., 60 (12) (2012), 41074116.Google Scholar
[16] Stameroff, A.N.; Ta, H.H.; Pham, A.V.; Leoni, R.E. III: Wide-bandwidth power-combining and inverse class-F GaN power amplifier at X-band. IEEE Trans. Microw. Theory Tech., 61 (3) (2013), 12911300.Google Scholar
[17] Kuroda, K.; Ishikawa, R.; Honjo, K.: Parasitic compensation design technique for a C-band GaN HEMT class-F amplifier. IEEE Trans. Microw. Theory Tech., 58 (11) (2010), 27412750.Google Scholar
[18] Kobayashi, Y.; Yoshida, Y.; Yamamoto, Z.; Kawasaki, S.: S-band GaN on Si based 1 kW-class SSPA system for space wireless applications. IEICE Trans. Electron., E96-C (10) (2013), 12451253.Google Scholar
[19] Goto, N.; Tsunoda, Y.: Sidelobe reduction of circular arrays with a constant excitation amplitude. IEEE Trans. Antennas Propag., 25 (6) (1977), 896898.Google Scholar
[20] Will, P.M.; Keizer, N.: Low sidelobe array pattern synthesis with compensation for errors due to quantized tapering. IEEE Trans. Antennas Propag., 59 (12) (2011), 45204524.Google Scholar
[21] Juyal, P.; Shafai, L.: Sidelobe reduction of TM12 mode of circular patch via nonresonant narrow slot. IEEE Trans. Antennas Propag.., 64 (8) (2016), 33613369.Google Scholar
[22] Hodjat, F.; Hovanessian, S.: Nonuniformly spaced linear and planar array antennas for sidelobe reduction. IEEE Trans. Antennas Propag.., 26 (2) (1978), 198204.Google Scholar
[23] Nasirov, S.; Levine, E.; Matzner, H.: Sidelobe reduction in uniformly-fed arrays by applying parasitic elements, in Proc ISAP 2016, 24–28 October 2016.Google Scholar
[24] Zainal, N.A.; Kamarudin, M.R.; Yamada, Y.; Seman, N.; Khalily, M.; Jusoh, M.: Sidelobe reduction of unequally spaced arrays for 5G applications, in Proc. 10th EuCAP, 10–15 April 2016.Google Scholar
[25] Huang, G.L.; Zhou, S.G.; Chio, T.H.; Hui, H.T.; Yeo, T.S.: A low profile and low sidelobe wideband slot antenna array Feb by an amplitude-tapering waveguide feed-network. IEEE Trans. Antennas Propag. 63 (1) (2015), 419423.Google Scholar
[26] Nikkhah, M.R.; Mohassel, J.R.; Kishk, A.A.: Wide-band and low sidelobe array of rectangular dielectric resonator antennas with parasitic elements, in Proc. ICMCS w014, 14–16 April 2014.Google Scholar
[27] Chen, F.C.; Hu, H.T.; Li, R.S.; Chu, Q.Z.; Lancaster, M.J.: Design of filtering microstrip antenna array with reduced sidelobe level. IEEE Trans. Antennas Propag. 65 (2) (2017), 903908.Google Scholar
[28] Taylor, T.T.: Design of line-source antennas for narrow beamwidth and low side lobes. IEEE Trans. Antennas Propag., 3 (1) (1955), 1628.Google Scholar