Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T01:43:37.921Z Has data issue: false hasContentIssue false

A Hypothesis of Amitrole Action Based on its Behavior Toward Free Radical Generating Systems

Published online by Cambridge University Press:  12 June 2017

Paul Castelfranco
Affiliation:
University of California, Davis, California
Milford S. Brown
Affiliation:
University of California, Davis, California
Get access

Abstract

This paper extends previous observations on the interaction of 3-amino-1,2,4-triazole (amitrole) and riboflavin leading to the decomposition of amitrole to include the protective effect of amitrole on the photodestruction of flavins and flavoproteins. Photoactivation of radioactive amitrole in the presence of riboflavin causes the labeling of inert protein. Cupric ion, ascorbic acid, and oxygen can replace riboflavin and light in the destruction of amitrole and in the labeling of inert protein. The inhibition of fatty acid peroxidase previously reported by Castelfranco has been shown to be irreversible and to require the presence of a hydrogen peroxide generating system. The authors suggest a hypothesis for the mode of action of amitrole which depends upon the ability of this compound to interact with free radical generating systems, presumably by undergoing a one-electron oxidation.

Type
Research Article
Copyright
Copyright © 1963 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Aaronson, S. 1960. Mode of action of 3-amino-1,2,4-triazole on photosynthetic microorganisms. J. Protozool. 7:289294.Google Scholar
2. Aaronson, S. and Scher, S. 1960. Effect of aminotriazole and streptomycin on multiplication and pigment production of photosynthetic microorganisms. J. Protozool. 7:156158.Google Scholar
3. Andreae, W. A. 1955. The photoinduced oxidation of manganous ions. Arch. Biochem. Biophys. 55:584586.Google Scholar
4. Carter, M. C., and Naylor, A. W. 1959. The formation, in vivo, of a complex between 3-amino-1,2,4-triazole and glycine-serine derivatives. Plant Physiol. 34:(suppl.) vi.Google Scholar
5. Carter, M. C., and Naylor, A. W. 1961. Studies on an unknown metabolic product of 3-amino-1,2,4-triazole. Physiol. Plant. 14:2027.CrossRefGoogle Scholar
6. Carter, M. C., and Naylor, A. W. 1960. Metabolism of labeled 3-amino-1,2,4-triazole in plants. Bot. Gaz. 122:138143.CrossRefGoogle Scholar
7. Castelfranco, P. 1960. Inhibition of some metalloprotein enzymes by 3-amino-1,2,4-triazole. Biochim. Biophys. Acta. 41:485491.Google Scholar
8. Castelfranco, P. and Oppenheim, Ariella. 1961. Reversal of amitrole-induced chlorosis by riboflavin. Abstracts Weed Soc. Amer. 4344.Google Scholar
9. Castelfranco, P. and Oppenheim, Ariella, and Yamaguchi, S. 1963. Riboflavin-mediated photodecomposition of 3-amino-1,2,4-triazole in relation to chlorosis. Weeds 11:111115.Google Scholar
10. Castelfranco, P., Stumpf, P. K., and Contopoulou, Rebecca. 1955. Fat metabolism in higher plants V. A soluble palmitate oxidase requiring glycolic acid as activator. J. Biol. Chem. 214:568577.Google Scholar
11. Crafts, A. S. 1961. The chemistry and mode of action of herbicides. Interscience, New York, London. 269 p.Google Scholar
12. Feinstein, R. N., Berliner, S., and Green, F. O. 1958. Mechanism of inhibition of catalase by 3-amino-1,2,4-triazole. Arch. Biochem. Biophys. 76:3244.CrossRefGoogle Scholar
13. Fredrick, J. F., and Gentile, A. C. 1960. The stability constant of the manganese chelate of 3-amino-1,2,4-triazole. Arch. Biochem. Biophys. 91:178181.Google Scholar
14. Fredrick, J. F., and Gentile, A. C. 1960. The formation of the glucose derivative of 3-amino-1,2,4-triazole under physiological conditoins. Physiol. Plant. 13:761765.Google Scholar
15. Fredrick, J. F., and Gentile, A. C. 1961. The structure of the D-glucose adduct of 3-amino-1,2,4-triazole: infrared absorption studies. Arch. Biochem. Biophys. 92:356359.CrossRefGoogle Scholar
16. Guerin-Dumartrait, Eveline. 1960. Action du 3-amino-1,2,4-triazol sur la croissance, la teneur en pigments et les intensités photosynthetique et respiratoire de Chlorella pyrenoidosa Chick. Compt. Rend. 250:30443046.Google Scholar
17. Hall, W. C., Johnson, S. P., and Leinweber, C. L. 1954. Aminotriazole—a new abscission chemical and growth inhibitor. Texas Agr. Expt. Sta. Bull. 789.Google Scholar
18. Heim, W. G., Appleman, D., and Pyfrom, H. T. 1955. Production of catalase changes in animals with 3-amino-1,2,4-triazole. Science 122:693694.Google Scholar
19. Heim, W. G., Appleman, D., and Pyfrom, H. T. 1956. Effects of 3-amino-1,2,4-triazole (AT) on catalase and other compounds. Amer. J. Physiol. 186:1923.Google Scholar
20. Hilton, J. L. 1960. Effect of histidine on the inhibitory action of 3-amino-l,2,4-triazole. Weeds 8:392396.Google Scholar
21. Hilton, J. L. 1961. Evidence for photochemical and physiological mechanisms for riboflavin nullification of amitrole toxicity to plants. Abstracts Weed Soc. Am. 44.Google Scholar
22. Hilton, J. L. 1962. Riboflavin nullification of inhibitory actions of 3-amino-l,2,4-triazole on seedling growth. Plant Physiol. 37:238244.Google Scholar
23. Hofstee, B. M. J. 1955. On the mechanism of inhibition of xanthine oxidase by the substrate xanthine. J. Biol. Chem. 216:235244.Google Scholar
24. Ingraham, L. L. 1962. Biochemical mechanisms. John Wiley & Sons, New York, London. 108 p.Google Scholar
25. Maley, G. F., and Plaut, G. W. E. 1959. The isolation, synthesis, and metabolic properties of 6,7-dimethyl-8-ribityllumazine. J. Biol. Chem. 234:641647.Google Scholar
26. Margoliash, E., and Novogrodsky, A. 1958. A study of the inhibition of catalase by 3-amino-1,2,4-triazole. Biochem. J. 68:468475.Google Scholar
27. Margoliash, E., and Novogrodsky, A., and Schejter, A. 1960. Irreversible reaction of 3-amino-1,2,4-triazole and related inhibitors. Biochem. J. 74:339350.Google Scholar
28. Massini, P. 1959. Synthesis of 3-amino-1,2,4-triazolyl alanine from 3-amino-1,2,4-triazole in plants. Biochim. Biophys. Acta. 36:548549.Google Scholar
29. Potts, K. T. 1961. The chemistry of 1,2,4-triazoles. Chemical Reviews 61:87127.Google Scholar
30. Pyfrom, H. T., Appleman, D., and Heim, W. G. 1937. Catalase and chlorophyll depression by 3-amino-1,2,4-triazole. Plant Physiol. 32:674676.Google Scholar
31. Sugimura, T. 1956. The mechanism of liver catalase depression by 3-amino-l,2,4-triazole. GANN 47:159170.Google Scholar
32. Sund, K. A. 1956. Residual activity of 3-amino-1,2,4-triazole in soils. J. Agr. Food Chem. 4:5760.Google Scholar
33. Sund, K. A. and Little, H. N. 1960. Effect of 3-amino-1,2,4-triazole on the synthesis of riboflavin. Science 132:622.Google Scholar
34. Sund, K. A., Putala, E. C., and Little, H. N. 1960. Phytotoxicity of herbicides, reduction of 3-amino-1,2,4-triazole phytotoxicity in tomato plants. J. Agr. Food Chem. 8:210212.Google Scholar
35. Weyter, F. W., and Broquist, H. P. 1960. Interference with adenine and histidine metabolism of microorganisms by aminotriazole. Biochim. Biophys. Acta. 40:567569.Google Scholar
36. Wolf, F. T. 1960. Influence of aminotriazole on the chloroplast pigments of wheat seedlings. Nature. 188:164165.Google Scholar