Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T03:08:22.775Z Has data issue: false hasContentIssue false

Yellow Nutsedge (Cyperus esculentus) Interference in Soybean

Published online by Cambridge University Press:  20 January 2017

Kelly A. Nelson*
Affiliation:
Division of Plant Sciences, University of Missouri, Novelty, MO 63460
Randall L. Smoot
Affiliation:
Greenley Research Center, University of Missouri, Novelty, MO 63460
*
Corresponding author's E-mail: [email protected].

Abstract

Field research was conducted in 2000 and 2001 to determine the effect of yellow nutsedge emergence timing and plant density on soybean yield and on yellow nutsedge propagation the following year. Yellow nutsedge tubers were planted at 0-, 7.5- (13/m2), 15- (8.6/m2), 30- (4.3/m2), 60- (2.2/m2), and 90-cm (1.5/m2) in-row spacings with soybean. Yellow nutsedge densities from 2.2 to 13 plants/m2 in a high-yield year (2000) and 4.3 to 13 plants/m2 in a low-yield year (2001) reduced grain yields 9 to 34%. In a separate experiment, tubers were planted 0, 2, 4, 6, and 8 wk after planting at a 15-cm (8.6/m2) in-row spacing. Seedlings that emerged with the crop and until 2 wk after planting reduced yield 9 to 11%. Yellow nutsedge densities from 1.5 to 13 plants/m2 contributed to significant aboveground biomass production, even with a competitive crop, such as soybean. For every gram of aboveground yellow nutsedge biomass produced in the fall, there were more than four shoots present the following spring.

Una investigación de campo fue realizada en 2000 y 2001 para determinar el impacto del tiempo en que emerge la Cyperus esculentus (yellow nutsedge) y la densidad de la población en el rendimiento de soya, así como también en la propagación de la Cyperus esculentus al año siguiente. Los tubérculos de Cyperus esculentus fueron sembrados con soya a 0, 7.5 (13/m2), 15 (8.6/m2), 30 (4.3/m2), 60 (2.2/ m2), 90 cm (1.5/m2) de espacio entre surcos. Las densidades de 2.2 a 13 plantas por metro cuadrado en un año (2000) de alto rendimiento y de 4.3 a 13 plantas por metro cuadrado en un año (2001) de bajo rendimiento redujeron la producción de grano de un 9 a un 34%. En otro experimento, los tubérculos fueron sembrados a 0, 2,4, 6 y 8 semanas después de la siembra (WAP) con un espacio entre surcos de 15 cm (8.6/m2). Las plántulas que emergieron con el cultivo y hasta 2 dos semanas después, disminuyeron la producción entre 9 y 11%. Las densidades de Cyperus esculentus de 1.5 a 13 plantas/m2 contribuyeron a un rendimiento significativo en la producción de biomasa aérea, incluso con un cultivo competitivo, tal como la soya. Por cada gramo de biomasa aérea de Cyperus esculentus producido en el otoño, hubieron más de cuatro retoños presentes en la primavera siguiente.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akin, D. S. and Shaw, D. R. 2001. Purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) control in glyphosate-tolerant soybean (Glycine max). Weed Technol 15:564570.Google Scholar
Appleby, A. P. and Paller, E. C. 1978. Effect of naptalam on growth of yellow nutsedge and subsequent control with glyphosate. Weed Res 18:247253.Google Scholar
Banks, P. A. 1983. Yellow nutsedge (Cyperus esculentus) control, regrowth, and tuber production as affected by herbicides. Weed Sci 31:419422.Google Scholar
Blanco-Canqui, H., Gantzer, C. J., Anderson, S. H., Alberts, E. E., and Ghidey, F. 2002. Saturated hydraulic conductivity and its impact on simulated runoff for claypan soils. Soil Sci. Soc. Am. J. 66:15961602.Google Scholar
Dixon, G. A. and Stoller, E. W. 1982. Differential toxicity, absorption, translocation, and metabolism of metolachlor in corn (Zea mays) and yellow nutsedge (Cyperus esculentus). Weed Sci 30:225230.Google Scholar
Fehr, W. R. and Caviness, C. E. 1985. Stages of soybean development. Ames, IA: Iowa State University Cooperative Extension Service Special Rep. 80. 20 p.Google Scholar
Ferrell, J. A., Earl, H. J., and Vencill, W. K. 2004. Duration of yellow nutsedge (Cyperus esculentus) competitiveness after herbicide treatment. Weed Sci 52:2427.Google Scholar
Ghafar, Z. and Watson, A. K. 1983. Effect of corn (Zea mays) population on the growth of yellow nutsedge (Cyperus esculentus). Weed Sci 31:588592.Google Scholar
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period of weed control in grain corn (Zea mays). Weed Sci 40:441447.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1991. The World's Worst Weeds: Distribution and Biology. Malabar, FL: Krieger. 125133.Google Scholar
Jordan-Molero, J. E. and Stoller, E. W. 1978. Seasonal development of yellow and purple nutsedges (Cyperus esculentus and Cyperus rotundus) in Illinois. Weed Sci 26:614618.Google Scholar
Keeley, P. E. 1987. Interference and interaction of purple and yellow nutsedges (Cyperus rotundus and C. esculentus) with crops. Weed Technol 1:7481.Google Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1985. Influence of glyphosate on resprouting of parent tubers of Cyperus esculentus . Weed Sci 34:2529.Google Scholar
Keeley, P. E. and Thullen, R. J. 1974. Yellow nutsedge control with soil-incorporated herbicides. Weed Sci 22:378383.Google Scholar
Keeley, P. E. and Thullen, R. J. 1978. Light requirements of yellow nutsedge (Cyperus esculentus) and light interception by crops. Weed Sci 26:1016.Google Scholar
Keeley, P. E., Thullen, R. J., Miller, J. H., and Carter, C. H. 1979. Comparison of four cropping systems for yellow nutsedge (Cyperus esculentus) control. Weed Sci 27:463467.Google Scholar
Kuehl, R. O. 1994. Statistical Principles of Research Design and Analysis. Belmont, CA: Duxbury. 686 p.Google Scholar
Lotz, L. A. P., Groeneveld, R. M. W., Habekotté, B., and Van Oene, H. 1991. Reduction of growth and reproduction of Cyperus esculentus by specific crops. Weed Res 31:153160.Google Scholar
Manley, B. S., Wilson, H. P., and Hines, T. E. 2002. Management programs and crop rotations influence populations of annual grass weeds and yellow nutsedge. Weed Sci 50:112119.Google Scholar
Nelson, K. A. and Renner, K. A. 1999. Weed management in wide- and narrow-row glyphosate resistant soybean. J. Prod. Agric 12:460465.Google Scholar
Nelson, K. A. and Renner, K. A. 2002. Yellow nutsedge (Cyperus esculentus) control and tuber production with glyphosate and ALS-inhibiting herbicides. Weed Technol 16:512519.Google Scholar
Pereira, W. and Crabtree, G. 1986. Absorption, translocation, and toxicity of glyphosate and oxyfluorfen in yellow nutsedge (Cyperus esculentus). Weed Sci 34:923929.Google Scholar
Reddy, K. N. and Bendixen, L. E. 1989. Toxicity, absorption and translocation of soil-applied chlorimuron in yellow and purple nutsedge. Weed Sci 37:147151.Google Scholar
Santos, B. M., Morales-Payan, J. P., Stall, W. M., Bewick, T. A., and Shilling, D. G. 1997. Effects of shading on the growth of nutsedges (Cyperus spp.). Weed Sci 45:670673.Google Scholar
SAS Institute 2005. SAS Users' Guide, Version 9.1. Cary, NC: SAS Institute.Google Scholar
Schippers, P., Borg, S. J. T., and Bos, J. J. 1995. A revision of the infraspecific taxonomy of Cyperus esculentus (yellow nutsedge) with an experimentally evaluated character set. Syst. Bot 20:461481.Google Scholar
Wehtje, G. R., Walker, R. H., Grey, T. L., and Hancock, H. G. 1997. Response of purple nutsedge (Cyperus rotundus) and yellow nutsedges (C. esculentus) to selective placement of sulfentrazone. Weed Sci 45:382387.Google Scholar