Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T05:38:15.477Z Has data issue: false hasContentIssue false

Yellow Nutsedge (Cyperus esculentus) Control with Methyl Iodide in Combination with Totally Impermeable Film

Published online by Cambridge University Press:  20 January 2017

Theodore P. McAvoy
Affiliation:
Department of Horticulture, Virginia Tech University, Eastern Shore Agricultural Research and Extension Center, Painter, VA 23420
Joshua H. Freeman*
Affiliation:
Department of Horticulture, Virginia Tech University, Eastern Shore Agricultural Research and Extension Center, Painter, VA 23420
*
Corresponding author's E-mail: [email protected]

Abstract

Methyl bromide (MBr) has been an industry standard for soil fumigation in a multitude of crops for decades. However, it has been banned by the United Nations Environment Programme, and alternatives to MBr must be implemented to sustain productivity in many vegetable crops that depend on soil fumigation. One alternative that has been implemented in some areas is methyl iodide (MeI). Efficacy of MeI has been demonstrated on many pest species and has been generally similar to MBr. Methyl iodide is a costly material, which has likely limited its adoption. Virtually impermeable film (VIF) and totally impermeable film (TIF) provide greater fumigant retention than low-density and high-density polyethylene film, which can allow for reduced fumigant application rates while maintaining fumigant efficacy. The objectives of this research were to evaluate TIF with reduced rates of shank-applied MeI : chloropicrin (Pic) (50 : 50 w/w) for the control of yellow nutsedge in tomato. Treatments included a standard rate of MeI : Pic (93.3 L ha−1 [178 kg ha−1 broadcast]) under VIF and TIF, three reduced rates (37.3, 56, 74.6 L ha−1 [71.2, 106.8, 142.5 kg ha−1 broadcast, respectively]) under TIF, and a nontreated control under TIF. Results indicate fumigant use rates may be reduced from a standard 93.3 L ha−1 under VIF to 37.3 L ha−1 (60% reduction) under TIF while providing yellow nutsedge control and maintaining tomato yields.

Methyl bromide (MBr) ha sido el estándar de la industria para la fumigación de suelo en múltiples cultivos por décadas. Sin embargo, debido a que ha sido prohibido por el Programa para el Ambiente de las Naciones Unidas, alternativas a MBr deben ser implementadas para mantener la productividad de muchos vegetales que dependen de la fumigación del suelo. Una alternativa que ha sido implementada en varias áreas es methyl iodide (MeI). La eficacia de MeI ha sido demostrada en muchas especies de plagas y ha sido generalmente similar a MBr. Methyl iodide es un material costoso, lo que probablemente ha limitado su adopción. Coberturas virtualmente impermeables (VIF) y coberturas totalmente impermeables (TIF) brindan mayor retención del fumigante que las coberturas de polyethylene de baja o alta densidad, lo que permite el uso de dosis reducidas de fumigante manteniendo su eficacia. Los objetivos de esta investigación fueron evaluar TIF con dosis reducidas inyectadas al suelo de MeI:chloropicrin (Pic) (50:50 w/w) para el control de Cyperus esculentus en tomate. Los tratamientos incluyeron una dosis estándar de MeI:Pic (93.3 L ha−1 [178 kg ha−1 aplicación generalizada]) bajo VIF y TIF, tres dosis reducidas (37.3, 56, 74.6 L ha−1 [71.2, 106.8, 142. 5 kg ha−1 aplicación generalizada, respectivamente]) bajo TIF y un testigo no tratado bajo TIF. Los resultados indican que las dosis de fumigante pueden ser reducidas desde el estándar 93.3 L ha−1 bajo VIF a 37.3 L ha−1 (reducción del 60%) bajo TIF al tiempo que se obtiene el control de C. esculentus y se mantiene el rendimiento del tomate.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Buker, R. S. III, Stall, W. M., Olson, S. M., and Schilling, D. G. 2003. Season-long interference of yellow nutsedge (Cyperus esculentus) with direct-seeded and transplanted watermelon (Citrullus lanatus). Weed Technol. 17 :751754.Google Scholar
Chellemi, D. O., Ajwa, H. A., Sullivan, D. A., Alessandro, R., Gilreath, J. P., and Yates, S. R. 2011. Soil fate of agricultural fumigants in raised-bed, plasticulture systems in the southeastern United States. J. Environ. Qual. 40 :12041214.Google Scholar
Chow, E. 2008. Properties of EVOH and TIF films for the reduction of fumigant dosage and VOC emission. Proc. 2008 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. http://mbao.org/2008/Proceedings/038ChowEMBAO2008Kuraray.pdf. Accessed: March 18, 2012.Google Scholar
Chow, E. 2009. An update on the development of TIF mulching films. Proc. 2009 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. http://www.mbao.org/2009/Proceedings/050ChowEMBAO2009.pdf. Accessed: March 18, 2012.Google Scholar
Duniway, J. M. 2002. Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology 92 :13371343.Google Scholar
Fennimore, S. A. and Ajwa, H. A. 2011. Totally impermeable film retains fumigants, allowing lower application rates in strawberry. Calif. Agric. 65 :211215.Google Scholar
Freeman, J. H. and McAvoy, T. 2011. Reduced rates of dimethyl disulfide in combination with totally impermeable film. Proc. 2011 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. http://mbao.org/2011/Proceedings/35FreemanJDMDSTIF.pdf. Accessed: August 21, 2012.Google Scholar
Gamliel, A., Grinstein, A., Peretz, Y., Klein, L., Nachmias, A., Tsror, L., Livescu, L., and Katan, J. 1997. Reduced dosage of methyl bromide for controlling verticillium wilt of potato in experimental and commercial plots. Plant Dis. 81 :469474.Google Scholar
Gamliel, A., Grinstein, A., Klein, L., Cohen, Y., and Katan, J. 1998. Permeability of plastic films to methyl bromide: field study. Crop Prot. 17 :241248.Google Scholar
Gao, S., Hanson, B. D., Qin, R., Wang, D., and Yates, S. R. 2011a. Comparisons of soil surface sealing methods to reduce fumigant emission loss. J. Environ. Qual. 40 :14801487.Google Scholar
Gao, S., Hanson, B. D., Wang, D., Browne, G. T., Qin, R., Ajwa, H. A., and Yates, S. R. 2011b. Methods evaluated to minimize emissions from preplant soil fumigation. Calif. Agric. 65 :4146.Google Scholar
Gilreath, J., Santos, B., Mirusso, J., Noling, J., and Gilreath, P. 2005a. Application considerations for successful use of VIF and metalized mulches with reduced fumigant rates in tomato. http://edis.ifas.ufl.edu/hs270. Accessed: March 21, 2012.Google Scholar
Gilreath, J. P., Motis, T. N., and Santos, B. M. 2005b. Cyperus spp. control with reduced methyl bromide plus chloropicrin doses under virtually impermeable films in pepper. Crop Prot. 24 :285287.Google Scholar
Gilreath, J. P. and Santos, B. M. 2011. Methyl iodide plus chloropicrin rates and formulations for nutsedge management in tomato. HortTechnology 21 :5155.Google Scholar
Hamill, J. E., Thomas, J. E., Ou, L. T., Allen, L. H. Jr., Kokalis-Burelle, N., and Dickson, D. W. 2008. Effects of reduced rates of Telone C35 and methyl bromide in conjunction with virtually impermeable film on weeds and root-knot nematodes. Nematropica 38 :3746.Google Scholar
Hutchinson, C. M. Jr., McGriffen, M. E., Sims, J. J., and Becker, J. O. 2003. Fumigant combinations for Cyperus esculentus L. control. Pest Manag. Sci. 60 :369374.Google Scholar
Johnson, W. C. III, and Mullinix, B. G. Jr. 1999. Cyperus esculentus interference in Cucumis sativus . Weed Sci. 47 :327331.Google Scholar
Lembright, H. W. 1990. Soil fumigation: principles and application technology. J. Nematol. (Suppl.) 22 :632644.Google Scholar
Minuto, A., Gilardi, G., Gullino, M. L., and Garibaldi, A. 1999. Reduced dosages of methyl bromide applied under gas-impermeable plastic films for controlling soilborne pathogens of vegetable crops. Crop Prot. 18 :365371.Google Scholar
Motis, T. N., Locascio, S. J., Gilreath, J. P., and Stall, W. M. 2003. Season-long interference of yellow nutsedge (Cyperus esculentus) with polyethylene-mulched bell pepper (Capsicum annuum). Weed Technol. 17 :543549.Google Scholar
Munnecke, D. E., and Van Gundy, S. D. 1979. Movement of fumigants in soil, dosage responses, and differential effects. Annu. Rev. Phytopathol. 17 :405429.Google Scholar
Noling, J. W. 2002. Reducing methyl bromide field application rates with plastic mulch technology. http://edis.ifas.ufl.edu. Accessed: April 11, 2012.Google Scholar
Ohr, H. D., Sims, J. J., Grech, N. M., Becker, J. O., and McGiffen, M. E. Jr. 1996. Methyl iodide, an ozone-safe alternative to methyl bromide as a soil fumigant. Plant Dis. 80 :731735.Google Scholar
Ou, L.-T., Thomas, J. E., Allen, L. H., Vu, J. C., and Dickson, D. W. 2007. Emissions and distribution of methyl bromide in field beds applied at two rates and covered with two types of plastic mulches. J. Environ. Sci. Health 42 :1520.Google Scholar
Olson, S. M. and Kreger, R. 2007. Efficacy of Midas (50/50) as a soil fumigant for tomato production. Proc. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. http://mbao.org/2007/Proceedings/032OlsonStomato2007.pdf. Accessed: March 22, 2012.Google Scholar
Qin, R., Gao, S., Ajwa, H., Sullivan, D., Wang, D., and Hanson, B. D. 2011. Field evaluation of a new plastic film (Vapor Safe) to reduce fumigant emissions and improve distribution in soil. J. Environ. Qual. 40 :11951203.Google Scholar
Santos, B. M., Gilreath, J. P., Esmel, C. E., and Siham, M. N. 2007a. Effects of yellow and purple nutsedge time of establishment on their distance of influence on bell pepper. HortTechnology 17 :305307.Google Scholar
Santos, B. M., Gilreath, J. P., and Motis, T. N. 2005. Managing nutsedge and stunt nematode in pepper with reduced methyl bromide plus chloropicrin rates under virtually impermeable films. HortTechnology 15 :596599.Google Scholar
Santos, B. M., Gilreath, J. P., Motis, T. N., von Hulten, M., and Siham, M. N. 2006. Effects of mulch types and concentrations of 1,3-dichloropropene plus chloropicrin on fumigant retention and nutsedge control. HortTechnology 16 :637640.Google Scholar
Santos, B. M., Gilreath, J. P., and Siham, M. N. 2007b. Comparing fumigant retention of polyethylene mulches for nutsedge control in Florida spodosols. HortTechnology 17 :308311.Google Scholar
Stall, W. M. and Morales-Payan, J. P. 2000. The critical period of nutsedge interference in tomato. http://hendry.ifas.ufl.edu/index_march-april2000.htm#The%20Critical%20Period%20of%20Nutsedge. Accessed: March 18, 2012.Google Scholar
Sydorovych, O., Safley, C. D., Welker, R. M., Ferguson, L. M., Monks, D. W., Jennings, K., Driver, J., and Louws, F. J. 2008. Economic evaluation of methyl bromide alternatives for the production of tomatoes in North Carolina. HortTechnology 18 :705713.Google Scholar
[USDA] U.S. Department of Agriculture. 1991. United States Standards for Grades of Fresh Tomato. USDA Agric. Marketing Serv. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050331. Accessed: October 22, 2011.Google Scholar
[USEPA] U.S. Environmental Protection Agency. 2009. Amended reregistration eligibility decision for methyl bromide (soil and non-food structural uses). http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPP-2005-0123-0716. Accessed: February 15, 2012.Google Scholar
Wang, D., Yates, S. R., and Jury, W. A. 1998. Temperature effect on methyl bromide volatilization: permeability of plastic cover films. J. Environ. Qual. 27 :821827.Google Scholar
Webster, T. M. 2005. Patch expansion of purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) with and without polyethylene mulch. Weed Sci. 53 :839845.Google Scholar
Webster, T. M. 2006. Weed survey – southern states: vegetable, fruit and nut crops subsection. Proc. South. Weed Sci. Soc. 59 :260277.Google Scholar
Wilson, H. P., Kuhar, T. P., Rideout, S. L., Freeman, J. H., Reiter, M. S., Straw, R. A., Hines, T. E., Waldenmaier, C. M., Doughty, H. B., and Deitch, U. T. 2010. Virginia commercial vegetable production recommendations for 2010. Virginia Coop. Ext. Pub. 456-420.Google Scholar
Yates, S. R., Gan, J., Papiernik, S. K., Dungan, R., and Wang, D. 2002. Reducing fumigant emissions after soil application. Phytopathology 92 :13441348.Google Scholar
Zhang, W. M., McGiffen, M. E. Jr., Becker, J. O., Ohr, H. D., Sims, J. J., and Kallenbach, R. L. 1997. Dose response of weeds to methyl iodide and methyl bromide. Weed Res. 37 :181189.Google Scholar