Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T16:21:25.241Z Has data issue: false hasContentIssue false

Weed Mortality Caused by Row-Crop Cultivation in Organic Corn–Soybean–Spelt Cropping Systems

Published online by Cambridge University Press:  20 January 2017

Charles L. Mohler*
Affiliation:
Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
Caroline A. Marschner
Affiliation:
Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
Brian A. Caldwell
Affiliation:
Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
Antonio DiTommaso
Affiliation:
Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
*
Corresponding author's E-mail: [email protected]

Abstract

To assess the effectiveness of interrow cultivation, counts were taken before and after cultivation of corn and soybean during the first two crop rotations in a corn–soybean–spelt organic grain cropping systems experiment. Overall control per cultivation event in soybean was 73%, about equal to the 67% of the interrow area actually covered by cultivator tools. Weed control per cultivation event in corn was higher, and exceeded 91% at later cultivations. The greater weed control in corn relative to soybean, particularly at later cultivations, was probably due to more soil being thrown into the corn row, burying a greater proportion of the weeds. Perennial weeds emerging from roots and rhizomes were less controlled by cultivation events than weeds emerging from seeds. Relatively poor control of perennials was due both to rapid resprouting during the few days between cultivation and assessment and to a lower probability of death in the zone indirectly disturbed by cultivator tools. Seedlings of perennial species suffered greater mortality from cultivation than annual weeds, probably because the low relative growth rate of perennials resulted in small seedlings that were susceptible to cultivation. Common ragweed was less controlled by cultivation than other annual weeds, probably because its heavier seeds produced larger seedlings at the time of cultivation. These larger seedlings were less likely to be buried during hilling-up operations at later cultivations. Counts of weeds before and after individual cultivation events provide insight into the processes affecting weed mortality during mechanical management.

Para evaluar la efectividad de la labranza entre hileras, se tomaron conteos antes y después de la labranza de maíz y soja durante las primeras dos rotaciones de cultivos en un experimento con un sistema orgánico de cultivos para grano maíz–soja–trigo espelta. El control general por evento de labranza en soja fue 73%, casi igual al 67% del área entre hileras cubierta por los implementos del equipo de labranza. El control de malezas por evento de labranza en el maíz fue más alto y excedió 91% con labranzas posteriores. El mayor control de malezas en el maíz en relación a la soja, particularmente con eventos de labranza posteriores, se debió probablemente a que se tiró más suelo sobre la hilera del maíz, enterrando una mayor proporción de las malezas. Malezas perennes emergiendo a partir de raíces y rizomas fueron controladas con los eventos de labranza en menor medida que las malezas emergiendo a partir de semillas. El control relativamente pobre de perennes se debió a su rápida capacidad de rebrote en pocos días entre la labranza y la evaluación y a una menor probabilidad de mortalidad en la zona indirectamente perturbada por las herramientas de labranza. Las plántulas de especies perennes sufrieron mayor mortalidad producto de la labranza que las malezas anuales, probablemente porque la baja tasa de crecimiento relativa de las perennes resultó en plántulas pequeñas que fueron susceptibles a la labranza. Ambrosia artemisiifolia fue controlada con la labranza en menor medida que otras malezas anuales, probablemente porque sus semillas más pesadas produjeron plántulas más grandes al momento de la labranza. Estas plántulas más grandes tuvieron una menor probabilidad de ser enterradas durante las operaciones de aporca con labranzas posteriores. Los conteos de malezas antes y después de los eventos individuales de labranza brindaron una visión detallada de los procesos que afectan la mortalidad de malezas durante el manejo mecánico.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Steve Fennimore, University of California, Davis.

References

Literature Cited

Bond, W, Grundy, AC (2001) Non-chemical weed management in organic farming systems. Weed Res 41: 383405 Google Scholar
Buhler, DD (2002) Challenges and opportunities for integrated weed management. Weed Sci 50: 273280 CrossRefGoogle Scholar
Caldwell, B, Mohler, CL Ketterings, QM, DiTommaso, A (2014) Yields and profitability during and after transition in organic grain cropping systems. Agron J 106: 871880 CrossRefGoogle Scholar
Cirujeda, A, Melander, B, Rasmussen, K, Rasmussen, IA (2003) Relationship between speed, soil movement into the cereal row and intra-row weed control efficacy by weed harrowing. Weed Res 43: 285296 Google Scholar
Cornell Cooperative Extension (2012) 2012 Cornell Guide for Integrated Field Crop Management. Cornell University. http://ipmguidelines.org/fieldcrops/. Accessed November 30, 2012Google Scholar
Fogelberg, F, Dock Gustavsson, AM (1999) Mechanical damage to annual weeds and carrots by in-row brush weeding. Weed Res 39: 469479 CrossRefGoogle Scholar
Grime, JP, Hunt, R (1975) Relative growth-rate: its range and adaptive significance in a local flora. J Ecol 63: 393422 Google Scholar
Kurstiens, DAG, Kropff, MJ (2001) The impact of uprooting and soil-covering on the effectiveness of weed harrowing. Weed Res 41: 211228 Google Scholar
Kurstjens, DAG, Perdok, UD, Goense, D (2000) Selective uprooting by weed harrowing on sandy soils. Weed Res 40: 431447 CrossRefGoogle Scholar
Melander, B, Hartvig, P (1997) Yield response of weed-free seeded onions [Allium cepa (L.)] to hoeing close to the row. Crop Prot 16: 687691 CrossRefGoogle Scholar
Melander, B, Holst, N, Rasmussen, IA, Hansen, PK (2012) Direct control of perennial weeds between crops—implications for organic farming. Crop Prot 40: 3642 Google Scholar
Melander, B, Rasmussen, IA, Bàrberi, P (2005) Integrating physical and cultural methods of weed control—examples from European research. Weed Sci 53: 369381 Google Scholar
Mohler, CL (1996) Ecological bases for the cultural control of annual weeds. J Prod Agric 9: 468474 Google Scholar
Mohler, CL (2001) Mechanical management of weeds. Pages 139209 in Liebman, L, Mohler, CL, Staver, CP, eds. Ecological Management of Agricultural Weeds. Cambridge: Cambridge University Press CrossRefGoogle Scholar
Mohler, CL, Frisch, JC, Mt. Pleasant, J (1997) Evaluation of mechanical weed management programs for corn (Zea mays). Weed Technol 11: 123131 Google Scholar
Mohler, CL, Iqbal, J, Shen, J, DiTommaso, A (2016) Effects of water on recovery of weed seedlings following burial. Weed Sci 64: 285293 Google Scholar
Mortensen, DA, Egan, JF, Maxwell, BD, Ryan, MR, Smith, RG (2012) Navigating a critical juncture for sustainable weed management. BioScience 62: 7584 Google Scholar
Rasmussen, J (1991) A model for prediction of yield response in weed harrowing. Weed Res 31: 401408 Google Scholar
van der Schans, D, Bleeker, P, eds (2006) Practical Weed Control in Arable Farming and Outdoor Vegetable Cultivation without Chemicals. Publication number 352. Wageningen, The Netherlands: Applied Plant Research. 77 pGoogle Scholar
van Es, HM, Gomes, CP, Sellmann, M, van Es, CL (2007) Spatially balanced complete block designs for field experiments. Geoderma 140: 346352 Google Scholar