Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-20T18:41:02.120Z Has data issue: false hasContentIssue false

Weed management practices in Argentina crops

Published online by Cambridge University Press:  21 June 2019

Julio Alejandro Scursoni*
Affiliation:
Professor, Cátedra de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
Alejandra Carolina Duarte Vera
Affiliation:
Graduate Student, Cátedra de Cerealicultura, Facultad de Agronomía, Universidad de Buenos Aires – CONICET, Buenos Aires, Argentina
Fernando Hugo Oreja
Affiliation:
Assistant Professor, Cátedra de Cultivos Industriales, Facultad de Agronomía, Universidad de Buenos Aires Buenos Aires, Argentina
Betina Claudia Kruk
Affiliation:
Professor, Cátedra de Cerealicultura, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
Elba Beatriz de la Fuente
Affiliation:
Professor, Cátedra de Cultivos Industriales, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
*
Author for correspondence: Julio Alejandro Scursoni, Email: [email protected]

Abstract

Data from surveys are used to help quantitatively diagnose the relative importance of chemical and nonchemical management practices, identify weed problems, and provide potential solutions. However, to our knowledge, such surveys have not been conducted in Argentina. In 2016, advisors and crop producers from cropping areas across Argentina were surveyed through email with the objectives to identify the main weed species problems and assess the use of chemical and nonchemical weed management practices in different crop production areas in Argentina. Fleabane, pigweed, johnsongrass, fingergrass, goosegrass, barnyardgrass, and ryegrass were considered the most important weeds. More than 53% of the producers used only chemical options; 86% used chemical fallow (i.e., keeping weed free with chemical application); 62% used full herbicide rates; 46% used proper herbicide timing; 41% used multiple modes of action; and 32% used rotation of herbicide modes of action. The main nonchemical practices used were crop rotation (45%); avoiding seed production during (31%) and after (25%) the crop cycle; narrow row spacing (19%); and cultivars with greater competitive ability (18%). Less than 15% of the people surveyed used increased crop densities or altered date of sowing. There is a high dependence on chemical control in the main crops grown in Argentina. Extension efforts are needed to emphasize the importance of integrated weed management.

Type
Education/Extension
Copyright
© Weed Science Society of America, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baastians, L, Paolini, R, Baumann, DT (2008) Focus on ecological weed management: what is hindering adoption? Weed Res 48:481491 CrossRefGoogle Scholar
Blackshaw, RE, Beckie, HJ, Molnar, LJ, Entz, T, Moyer, JR (2005) Combining agronomic practices and herbicides improves weed management in wheat– canola rotations within zero-tillage production systems. Weed Sci 53: 528535 CrossRefGoogle Scholar
Buhler, DD (1999) Expanding the context of weed management. J Crop Prod 2:17CrossRefGoogle Scholar
[CASAFE] Cámara de Sanidad Agropecuaria y Fertilizantes (2015) Homepage. https://www.casafe.org/publicaciones/datos-del-mercado-argentino-de-fitosanitarios/. Accessed: December 2017Google Scholar
de la Fuente, EB, Suarez, SA, Ghersa, CM (2006) Soybean weed community composition and richness between 1995 and 2003 in the Rolling Pampas (Argentina). Agric Ecosyst Environ 115: 229236 CrossRefGoogle Scholar
Delucchi, J, Nisensohn, L, Tuesca, D (2005) International Survey of Herbicide Resistance. http://weedscience.com/Details/Case.aspx?ResistID=5271. Accessed: December 2017Google Scholar
Doré, T, Makowski, D, Malézieuxc, E, Munier-Jolaind, N, Tchamitchiane, M, Tittonell, P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Europ J Agron 34: 197210 CrossRefGoogle Scholar
Faccini, D, Puricelli, E (2007) Efficacy of herbicide, dose and plant stage on weeds present in fallow. Agriscientia XXIV(1): 2935 Google Scholar
Froud-Williams, RJ (1988) Changes in weed flora with different tillage and agronomic management systems. Pages 213236 in: Altieri, MA, Liebman, M, eds. Weed Management in Agroecosystems: Ecological Approaches. Boca Raton, FL: CRC Press.Google Scholar
Heap, IM (2018) International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: April 2018.Google Scholar
Heap, IM, Duke, S (2018) Overview of glyphosate-resistant weeds worldwide. Pest Manag Sci 74: 10401049 CrossRefGoogle ScholarPubMed
[ISAAA] International Service for the Acquisition of Agri-Biotech Applications (2017) GM Approval Database. http://www.isaaa.org/gmapprovaldatabase. Accessed: December 2017Google Scholar
Kruk, BC (2015) Disminución de la emergencia de malezas en diferentes escenarios agrícolas bajo siembra directa [Decrease in the emergence of weeds in different agricultural scenarios under direct seeding]. Agron Ambiente 35: 179190 Google Scholar
Metzler, M (2014) Manejo y control de rama negra [Management and control of Conyza sp.]. Newsletter No. 22 Julio. http://cropscience.bayer.com.ar/upload/AT/AT22_ManejoIntegradoDeMalezas.pdf. Manejo Integrado De Malezas.pdf. Accessed: November 2017Google Scholar
Muñoz, MS, Morello, JP, Scursoni, JA (2018) Respuesta a herbicidas inhibidores de ACCasa (haloxifop metil y cletodim) e inhibidores de EPSPS (glifosato) en Sorghum halepense en Argentina en los ciclos agrícolas 2016/17 y 2017/18 [Response to ACCase inhibitor (halofyfop-methyl and clethodim) and EPSPS inhibitor (glyphosate) herbicides in Sorghum halepenese in Argentina in the agricultural cycles 2016/17 and 2017/18]. II. Congreso Argentino de Malezas; June 5–6, 2015; Rosario, Argentina. 94 p. http://www.asacim.org.ar/wp-content/uploads/2018/06/Argentina-2018.pdfGoogle Scholar
Muñoz, MS, Scursoni, JA (2015) Demografía de dos poblaciones de Sorghum halepense (L.) Pers. con baja sensibilidad a glifosato [Population demographics of Sorghum halepense (L.) Pers. with low sensitivity to glyphosate]. Actas XX Congreso Latinoamericano de Malezas, I. Congreso Argentino de Malezas; September 9–10, 2015; Buenos Aires, Argentina. Pp 141144. http://www.asacim.org.ar/wp-content/uploads/2018/06/Argentina-2015.pdf Google Scholar
Myers, JP, Antoniou, MN, Blumberg, B, Carroll, L, Colborn, T, Everett, LG, Hansen, M, Landrigan, PG, Lanphear, BP, Mesnage, R, Vandenberg, LN, vom Saal, FS, Welshons, WV, Benbrook, CM (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environmental Health 15: 19 CrossRefGoogle ScholarPubMed
Norsworthy, JK, Bond, J, Scott, RC (2013) Crop weed management practices and needs in Arkansas and Mississippi rice. Weed Technol 27: 623630 CrossRefGoogle Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. 60(SP1): 3162 CrossRefGoogle Scholar
Oerke, EC (2006) Crop losses to pests. J Agric Sci 144:3143 CrossRefGoogle Scholar
Puricelli, E, Orioli, G, Sabbatini, MR (2002) Demography of Anoda cristata in wide- and narrow-row soybean. Weed Res 42:456463 CrossRefGoogle Scholar
Qaim, M, Traxler, G. (2005) Roundup Ready soybeans in Argentina: farm level and aggregate welfare effects. Agric Econ 32: 7386 CrossRefGoogle Scholar
[ReTAA] Relevamiento de Tecnología Agrícola Aplicada de la Bolsa de Cereales (2017) www.bolsadecereales.com/imagenes/retaa/2017-04/ReTAA_campania_Fina.pdf. Accessed: November 2017Google Scholar
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DO, Eubank, TW, Bond, J, Scott, RC (2013a) Adoption of best management practices for herbicide-resistant weeds in midsouthern United States cotton, rice, and soybean. Weed Technol 27: 788797 CrossRefGoogle Scholar
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DO IV, Eubank, TW, Scott, RC (2013b) Assessment of weed management practices and problem weeds in the midsouth United States soybean: a consultant’s perspective. Weed Technol 27: 612622 CrossRefGoogle Scholar
Satorre, E, Kruk, B (2016) Interacciones cultivo-malezas: competencia [Crop-weed interactions: Competition]. Pages 141178 in Satorre, E, Kruk, B, de la Fuente, E, eds. Bases y herramientas para el manejo de malezas [Foundations and tools for weed management]. Capítulo 5. Buenos Aires, Argentina: Editorial Facultad de Agronomía, UBA Google Scholar
Scursoni, J, Satorre, EH (2005) Barley (Hordeum vulgare) and wild oat (Avena fatua) competition is affected by crop and weed density. Weed Technol 19:790795 CrossRefGoogle Scholar
Scursoni, J, Satorre, EH (2010) Glyphosate management strategies, weed diversity and soybean yield in Argentina. Crop Prot 29:957962 CrossRefGoogle Scholar
Scursoni, J, Vila Aiub, M (2016) Resistencia de las malezas a los herbicidas [Weed resistance to herbicides]. Pages 246277 in Satorre, E, Kruk, B, de la Fuente, E. eds. Bases y herramientas para el manejo de malezas [Foundations and tools for weed management]. Buenos Aires, Argentina: Editorial Facultad de Agronomía, UBA Google Scholar
SubSecretaría de Agroindustria. (2017) Datos Agroindustriales. http://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones. Accessed: November 2017Google Scholar
Tuesca, D, Puricelli, E (2007) Effect of tillage systems and herbicide treatments on weed abundance and diversity in a glyphosate resistant crop rotation. Crop Prot 26:17651770 CrossRefGoogle Scholar
Tilman, D, Cassman, KG, Matson, PA, Naylor, R, Polasky, S (2002) Agricultural sustainability and intensive production practices. Nature 418: 671677 CrossRefGoogle ScholarPubMed
Uttley, NL (2009) Agrochemical proprietary off-patent products-what are they? Outlooks on Pest Management 20: 8588 CrossRefGoogle Scholar
Vigna, M, Papa, J, Ponsa, J, Bedmar, F, Guevara, G, Rainero, H, Olea, I, Gigón, R, Isitilart, C, López, R, Arguissain, G, Picapietra, G (2014) El control químico de malezas en cultivos extensivos [Chemical control of weeds in extensive farming]. In Fernandez, O, Leguizamón, E, Acciaresi, H, eds. Malezas e Invasoras de la Argentina. Tomo I: Ecología y Manejo [Weeds and invasive species of Argentina. Volume I: Ecology and management]. Editorial UNS, Bahía Blanca, Argentina.Google Scholar
Zhang, WJ, Jiang, FB, Ou, JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1: 125144 Google Scholar