Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T19:22:46.096Z Has data issue: false hasContentIssue false

Weed Management Practices and Needs in Arkansas and Mississippi Rice

Published online by Cambridge University Press:  20 January 2017

Jason K. Norsworthy*
Affiliation:
University of Arkansas, Department of Crop Soils and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason Bond
Affiliation:
Mississippi State University, Delta Research and Extension Center, P.O. Box 197, Stoneville, MS
Robert C. Scott
Affiliation:
University of Arkansas, Department of Crop Soils and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
*
Corresponding author's E-mail: [email protected]

Abstract

Crop consultants in Arkansas and Mississippi were sent a direct-mail survey in fall of 2011 with questions concerning weed management in rice. The goal of the survey was to document the extent of imidazoline-resistant rice hectares, the herbicides most commonly recommended in rice, the weeds perceived to be most troublesome in rice including those resistant to herbicides, and suggested areas of research and educational focus that would improve weed management in rice. When appropriate, results from this survey were compared to a similar survey conducted in 2006. Completed rice surveys were returned by 43 consultants, accounting for 179,500 ha of scouted rice or 38% of the rice hectarage in Arkansas and Mississippi. Imidazolinone-resistant rice was grown on 64% of the hectares, and this technology was used continually for the past 5 yr on 11% of the rice hectares. Of the area planted to imidazolinone-resistant rice, 42% of this hectarage was treated solely with an acetolactate synthase (ALS)-inhibiting herbicide. Consultants listed improved control options for barnyardgrass and Palmer amaranth as the most important research and educational need in rice. The top five weeds in order of importance were (1) barnyardgrass, (2) sprangletops, (3) red rice, (4) northern jointvetch, and (5) Palmer amaranth. From a predetermined list of research and educational topics, consultants gave the highest ratings of importance to (1) control of herbicide-resistant weeds, (2) strategies to reduce the occurrence and spread of herbicide-resistant weeds, and (3) development of new economical herbicide-resistant rice varieties which was comparable to economical weed control options. Findings from this survey point to the overuse of imidazolinone-resistant rice and a lack of preemptive resistance management strategies such as crop rotation and use of multiple effective herbicide modes of action by some growers, which has likely contributed to selection for the ALS-resistant barnyardgrass and rice flatsedge recently confirmed in Arkansas and Mississippi rice.

Se envió una encuesta vía correo electrónico a asesores agrícolas en Arkansas y Mississippi en el otoño de 2011 con preguntas relacionadas al manejo de malezas en arroz. El objetivo de la encuesta fue documentar la extensión de hectáreas de arroz resistente a herbicidas imidazolinone, los herbicidas más comúnmente recomendados en arroz, las malezas percibidas como las más problemáticas en arroz incluyendo aquellas resistentes a herbicidas, y las áreas sugeridas para hacer énfasis en investigación y educación que mejorarían el manejo de malezas en arroz. Cuando fue apropiado, los resultados de esta encuesta fueron comparados con una encuesta similar realizada en 2006. Las encuestas contestadas fueron devueltas por 43 asesores, contabilizando 179,500 ha de arroz evaluado o 38% del área de arroz en Arkansas y Mississippi. Arroz resistente a imidazolinone fue sembrado en 64% de las hectáreas, y esta tecnología fue usada continuamente durante los últimos 5 años en 11% de las hectáreas de arroz. Del área sembrada con arroz resistente a imidazolinone, 42% de esta área fue tratada solamente con un herbicida inhibidor de acetolactate synthase (ALS). Los asesores mencionaron mejores opciones de control de Echinochloa crus-galli y Amaranthus palmeri como las necesidades de investigación y de educación más importantes en arroz. Las cinco malezas más importantes fueron (1) E. crus-galli, (2) Leptochloa spp., (3) arroz rojo, (4) Aeschynomene virginica, y (5) A. palmeri. A partir de una lista predeterminada de temas de investigación y educación, los asesores dieron los mayores valores según la importancia a (1) el control de malezas resistentes a herbicidas, (2) las estrategias para reducir la ocurrencia y diseminación de malezas resistentes a herbicidas, y (3) el desarrollo de nuevas variedades económicas de arroz con resistencia a herbicidas, la cuales deberían ser comparables a otras opciones de control de malezas económicas. Los resultados de esta encuesta apuntan el sobreuso de arroz resistente a imidazolinone y a la falta de estrategias de manejo preventivo de resistencia, tales como la rotación de cultivos y el uso de múltiples modos de acción de herbicidas efectivos por algunos productores, lo que probablemente ha contribuido a la selección de E. crus-galli y Cyperus iria resistentes a herbicidas ALS, las cuales fueron confirmadas recientemente en arroz en Arkansas y Mississippi.

Type
Education/Extension
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2009. Clearfield® Rice: Stewardship Recommendations. http://horizonseed.net/docs/Stewardship_Guide_2009.pdf Accessed April 11, 2012.Google Scholar
Anonymous. 2012. Regiment Herbicide Label. http://www.cdms.net/LDat/ld5HT001.pdf. Accessed August 23, 2012.Google Scholar
Bagavathiannan, M. V., Norsworthy, J. K., Smith, K. L., and Burgos, N. 2011b. Seedbank size and emergence pattern of barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Sci. 59:359365.Google Scholar
Bagavathiannan, M. V., Norsworthy, J. K., Smith, K. L., and Neve, P. 2011a. A modeling approach for understanding the risks of barnyardgrass evolving resistance to herbicides in rice. Weed Sci. Soc. Abst. 51:325.Google Scholar
Bond, J. A., Griffin, J. L., Ellis, J. M., Linscombe, S. D., and Williams, B. J. 2006. Corn and rice response to simulated drift of imazethapyr plus imazapyr. Weed Technol. 20:113117.Google Scholar
Burgos, N. R., Norsworthy, J. K., Scott, R. C., and Smith, K. L. 2008. Red rice (Oryza sativa) status after 5 years of imidazolinone-resistant rice technology in Arkansas. Weed Technol. 22:200208.Google Scholar
Byrd, J. D. Jr., ed. 2012. 2012 Weed Control Guidelines for Mississippi. Mississippi State, MS: Mississippi State University Extension Service and Mississippi Agricultural and Forestry Experimental Station. Pp. 7989.Google Scholar
Carey, V. F. III, Smith, R. J. Jr., and Talbert, R. E. 1992. Reduced and standard herbicide rates for grass control in rice (Oryza sativa). Weed Technol. 6:409414.Google Scholar
Davis, B., Scott, R. C., Norsworthy, J. K., and Gbur, E. 2011. Response of rice (Oryza sativa) to low rates of glyphosate and glufosinate. Weed Technol. 25:198203.Google Scholar
Hensley, J. B., Webster, E. P., Blouin, D. C., Harrell, D. L., and Bond, J. A. 2012. Impact of drift rates of imazethapyr and low carrier volume on non-Clearfield rice. Weed Technol. 26:236242.Google Scholar
Hensley, J., Webster, E., Blouin, D., Harrell, D., and Bond, J. 2013. Response of rice to drift rates of glyphosate applied at low carrier volumes. Weed Technol. 27:257262.Google Scholar
Hensley, J. B., Webster, E. P., Harrell, D. L., and Bottoms, S. L. 2009. Herbicide drift affects Louisiana rice production. Louisiana Agric. 52:67.Google Scholar
Jha, P., Norsworthy, J. K., and Scott, R. C. 2010. Cyhalofop application timing and adjuvant selection for Echinochloa crus-galli control in rice. Crop Prot. 29:820823.Google Scholar
Khodayari, K., Nastasi, P., and Smith, R. J. Jr. 1989. Fenoxaprop for grass control in dry seeded rice (Oryza sativa). Weed Technol. 3:131135.Google Scholar
Koger, C. H., Shaner, D. L., Krutz, L. J., Walker, T. W., Buehring, N., Henry, W. B., Thomas, W. E., and Wilcut, J. W. 2005. Rice (Oryza sativa) response to drift rates of glyphosate. Pest Manag. Sci. 61:11611167.Google Scholar
Lewis, A. L., Norsworthy, J. K., Bond, J. A., and Bryson, C. T. 2012. Confirmation of ALS-resistant rice flatsedge. Proc. South. Weed Sci. Soc. 65:3.Google Scholar
Malik, M. S., Burgos, N. R., and Talbert, R. E. 2010. Confirmation and control of propanil-resistant and quinclorac-resistant (Echinochloa crus-galli) in rice. Weed Technol. 24:226233.Google Scholar
McCarty, L. B., Porter, D. W., Colvin, D. L., Shilling, D. G., and Hall, D. W. 1994. Controlling two sprangletop (Leptochloa spp.) species with preemergence herbicides. Weed Technol. 9:2933.Google Scholar
[NASS] National Agricultural Statistics Service. 2011. Acreage. http://usda01.library.cornell.edu/usda/current/Acre/Acre-06-30-2011.pdf Accessed April 11, 2012.Google Scholar
Nichols, R. L., Bond, J., Culpepper, A. S., Dodds, D., Nandula, V., Main, C. L., Marshall, M. W., Mueller, T. C., Norsworthy, J. K., Price, A., Patterson, M., Scott, R. C., Smith, K. L., Steckel, L. E., Stephenson, D., Wright, D., and York, A. C. 2009. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) spreads in the Southern United States. Resistant Pest Management Newsletter. 18(2):810.Google Scholar
Norsworthy, J. K., Bangarwa, S. K., Scott, R. C., Still, J., and Griffith, G. M. 2010a. Use of propanil and quinclorac tank mixtures for broadleaf weed control on rice (Oryza sativa) levees. Crop Prot. 29:255259.Google Scholar
Norsworthy, J. K., Burgos, N. R., Scott, R. C., and Smith, K. L. 2007. Consultant perspectives on weed management needs in Arkansas rice. Weed Technol. 21:832839.Google Scholar
Norsworthy, J. K., Griffith, G. M., and Scott, R. C. 2008a. Imazethapyr use with and without clomazone for weed control in furrow-irrigated, imidazoline-tolerant rice. Weed Technol. 22:217221.Google Scholar
Norsworthy, J. K., Johnson, D. B., Scott, R. C., and Bond, J. 2012. Resistance to rice herbicides in the Southern U.S.: a need for new modes of action. RTWG. 34:38i.Google Scholar
Norsworthy, J. K., Scott, R. C., Bangarwa, S., Griffith, G., and Wilson, M. J. 2011. Weed management in a furrow-irrigated imidazolinone-resistant hybrid rice production system. Weed Technol. 25:2529.Google Scholar
Norsworthy, J. K., Scott, R. C., and Smith, K. L. 2008b. Confirmation and management of clomazone-resistant barnyardgrass. BR Wells, Rice Research Series 560, pp. 113116.Google Scholar
Norsworthy, J. K., Scott, R. C., and Smith, K. L. 2010b. Herbicide-resistant barnyardgrass: A need for new herbicide chemistry in Arkansas rice. WSSA Abstract. https://srm.conference-services.net/reports/template/onetextabstract.xml?xsl=template/onetextabstract.xsl&conferenceID=1756&abstractID=343020. Accessed April 5, 2012.Google Scholar
Reddy, K. N. and Norsworthy, J. K. 2010. Glyphosate-Resistant Crop Production Systems: Impact on Weed Species Shift. Pages 165184 in Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Nandula, V. (ed.) Hoboken, New Jersey Wiley.Google Scholar
Riar, D. S. and Norsworthy, J. K. 2011. Use of imazosulfuron in herbicide programs for drill-seeded rice (Oryza sativa) in the Mid-South United States. Weed Technol. 25:548555.Google Scholar
Riar, D. S., Norsworthy, J. K., Bond, J. A., Bararpour, M. T., Wilson, M. J., and Scott, R. C. 2012. Resistance of Echinochloa crus-galli populations to acetolactate synthase-inhibiting herbicides. Int. J. Agron. DOI: Google Scholar
Scott, R. C., Boyd, J. W., Smith, K. L., Selden, G., and Norsworthy, J. K. 2012. Recommended chemicals for weed and brush control - MP44. http://www.uaex.edu/Other_Areas/publications/HTML/MP-44.asp. Accessed Nov. 12, 2012.Google Scholar
Shivrain, V. K., Burgos, N. R., Gealy, D. R., Sales, M. A., and Smith, K. L. 2009. Gene flow from weedy red rice (Oryza sativa L.) to cultivated rice and fitness of hybrids. Pest Manag. Sci. 65:11241129.Google Scholar
Starkey, C. E., Burgos, N. R., Norsworthy, J. K., and DeVore, J. D. 2012. Survey of Arkansas barnyardgrass (Echinochloa crus-galli) populations for resistance to rice herbicides. Proc. South. Weed Sci. Soc. 65:11.Google Scholar
Webster, E., Hensley, J., and Schultz, B. 2012. Identifying herbicide drift in rice. http://www.lsuagcenter.com/NR/rdonlyres/55FAF1AD-F709-4427-93C7-042E2CA6D984/74397/pub3167herbicidedriftinriceLOWRES.pdf. Accessed Nov. 12, 2012.Google Scholar
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States: 1974 to 1995. Weed Technol. 11:308317.Google Scholar
Webster, T. M. and MacDonald, G. E. 2001. A survey of weeds in various crops in Georgia. Weed Technol. 15:771790.Google Scholar
Webster, T. M. and Sosnoskie, L. M. 2010. Loss of glyphosate efficacy: A changing weed spectrum in Georgia cotton. Weed Sci. 58:7379.Google Scholar
Wilson, C. E. Jr., Runsick, S. K., and Mazzanti, R. 2010a. Trends in Arkansas rice production. in B. R. Wells Rice Research Studies 2009. Arkansas Agriculture Experiment Station Research Ser. 581:1121.Google Scholar
Wilson, M. J., Norsworthy, J. K., Johnson, D. B., McCallister, E. K., DeVore, J. D., Griffith, G. M., Bangarwa, S. K., Scott, R. C., and Smith, K. L. 2010b. Herbicide programs for controlling ALS-resistant barnyardgrass in Arkansas rice. BR Wells Rice Research Studies 2009. Arkansas Agri. Exp. Sta. Res. Ser. 581:153157.Google Scholar