Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T23:36:54.706Z Has data issue: false hasContentIssue false

Weed Management in Wide- and Narrow-Row Glyphosate-Resistant Sugarbeet

Published online by Cambridge University Press:  20 January 2017

Jon-Joseph Q. Armstrong*
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824
Christy L. Sprague
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824
*
Corresponding author's E-mail: [email protected].

Abstract

Planting glyphosate-resistant sugarbeet in narrow rows could improve weed control with fewer herbicide applications and cultivations. Field studies were conducted in 2007 and 2008 at multiple locations in Michigan to compare weed management and sugarbeet yield and quality in glyphosate-resistant sugarbeet planted in 38-, 51-, and 76-cm rows. At all locations, weed densities and biomass were less after glyphosate treatments than after conventional herbicide treatments. Weed densities and biomass also were less in 38- and 51-cm rows compared with 76-cm rows following a single glyphosate application when weeds were 10 cm tall. Averaged over row width, sugarbeet treated with glyphosate when weeds first reached 2 cm in height and again as needed thereafter yielded similarly to sugarbeet treated when weeds were 5 to 10 cm tall. However, root yields were reduced when glyphosate application was delayed until weeds averaged 15 cm in height. Sugarbeet root and sugar yields were greater from 38- and 51-cm row widths than from the 76-cm row widths, averaged over all herbicide treatments. Regardless of row width, initial glyphosate applications should be made before weeds reach 10 cm in height to maximize yield and minimize weed competition with sugarbeet.

La siembra de Beta vulgaris resistente al glifosato en líneas angostas, podría mejorar el control de malezas con menos aplicaciones de herbicida y labranzas. En 2007 y 2008 se realizaron estudios de campo en múltiples sitios en Michigan para comparar el manejo de la maleza y el rendimiento y calidad de Beta vulgaris resistente al glifosato, sembrado en líneas de 38, 51, y 76 cm. En todos los sitios, las densidades y la biomasa de la maleza fueron menores después de los tratamientos con glifosato que después de los tratamientos convencionales con herbicida. Las densidades de maleza y la biomasa fueron también menores en las líneas de 38 y 51 cm., comparadas con las líneas de 76 cm, después de una sola aplicación de glifosato, cuando las malezas tenían una altura de 10 cm. Promediado a través de los tres anchos de línea, el Beta vulgaris tratado con glifosato cuando la maleza alcanzó 2 cm de altura y nuevamente cuando se necesitara, tuvo un rendimiento similar al Beta vulgaris tratado cuando la maleza alcanzó una altura de 5 a 10 cm. Sin embargo, los rendimientos de raíz disminuyeron cuando la aplicación de glifosato se retrasó hasta que la maleza tuviera una altura promedio de 15 cm. Los rendimientos de raíz y de azúcar fueron mayores en las líneas con separaciones de 38 y 51 cm que en las de 76 cm., promediado a través de todos los tratamientos de herbicidas. Independientemente del ancho de las líneas, las aplicaciones iniciales del glifosato se deben hacer antes de que la maleza alcance 10 cm de altura para maximizar el rendimiento y minimizar la competencia de la maleza con Beta vulgaris.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alford, C. M., Miller, S. D., and Cecil, J. T. 2004. Using row spacing to increase crop competition with weeds. Proceedings of the 4th International Crop Science Congress. http://www.cropscience.org.au/icsc2004/poster/2/4/1/412_alfordcm.htm. Accessed: April 18, 2007.Google Scholar
Andrade, F. H., Calvino, P., Cirilo, A., and Barbieri, P. 2002. Yield responses to narrow rows depends on increased radiation interception. Agron. J. 94:975980.CrossRefGoogle Scholar
Carlson, A. L., Luecke, J. L., Khan, M. F. R., and Dexter, A. G. 2008. Survey of weed control and production practices on sugarbeet in eastern North Dakota and Minnesota in 2007. Sugarbeet Res. Ext. Rep. 38:6468.Google Scholar
Cattanach, A. and Schroeder, G. 1979. A comparison of 22 versus 30 inch row spacings at equal plant populations in 1976–1977. Sugarbeet Res. Ext. Rep. 10:198203.Google Scholar
Dalley, C. D., Kells, J. J., and Renner, K. A. 2004a. Effect of glyphosate application timing and row spacing on corn (Zea mays) and soybean (Glycine max) yields. Weed Technol. 18:165176.Google Scholar
Dalley, C. D., Kells, J. J., and Renner, K. A. 2004b. Effect of glyphosate application timing and row spacing on weed growth in corn (Zea mays) and soybean (Glycine max). Weed Technol. 18:177182.CrossRefGoogle Scholar
Giles, J. F., Von Holstein, C. S., Wilson, R., Ransom, C., Guza, C., Ishida, J., and Cattanach, A. 2001. Effect of within-row spacing and row width on sugarbeet production using glyphosate resistant sugarbeet. Pages. 68. in. Proceedings of the 31st Biennial Meeting of American Society of Sugar Beet Technologists.Google Scholar
Gower, S. A., Loux, M. M., Cardina, J., et al. 2003. Effect of postemergence glyphosate application timing on weed control and grain yield in glyphosate-resistant corn: Results of a 2-yr multistate study. Weed Technol. 17:821828.CrossRefGoogle Scholar
Guza, C. J., Ransom, C. V., and Mallory-Smith, C. 2002. Weed control in glyphosate-resistant sugarbeet (Beta vulgaris L.). J. Sugar Beet Res. 39:109123.CrossRefGoogle Scholar
Johnson, G. A. and Hoverstad, T. R. 2002. Effect of row spacing and herbicide application timing on weed control and grain yield in corn (Zea mays). Weed Technol. 16:548553.CrossRefGoogle Scholar
Kemp, N. J., Taylor, E. C., and Renner, K. A. 2009. Weed management in glyphosate and glufosinate-resistant sugarbeet. Weed Technol. 23:416424.CrossRefGoogle Scholar
Kniss, A. R., Wilson, R. G., Martin, A. R., Burgener, P. A., and Feuz, D. M. 2004. Economic evaluation of glyphosate-resistant and conventional sugar beet. Weed Technol. 18:388396.CrossRefGoogle Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. 1996. SAS® system for mixed models. Cary, NC: SAS Institute, Inc. 656 p.Google Scholar
Rao, P. V. 1998. Statistical research methods in the life sciences. Pacific Grove, CA: Duxbury. 889 p.Google Scholar
Sprague, C. L. and Everman, W. J. 2010. 2010 Weed control guide for field crops. Extension Bulletin E-434. East Lansing, MI: Michigan State University. 177 p.Google Scholar
Stebbing, J. A., Wilson, R. G., Martin, A. R., and Smith, J. A. 2000. Row spacing, redroot pigweed (Amaranthus retroflexus) density, and sugarbeet (Beta vulgaris) cultivar effects on sugarbeet development. J. Sugar Beet Res. 37:1131.Google Scholar
Wilson, R. G., Yonts, C. D., and Smith, J. A. 2002. Influence of glyphosate and glufosinate on weed control and sugarbeet (Beta vulgaris) yield in herbicide-tolerant sugarbeet. Weed Technol. 16:6673.Google Scholar
Yelverton, F. H. and Coble, H. D. 1991. Narrow row spacing and canopy formation reduces weed resurgence in soybeans (Glycine max). Weed Technol. 5:169174.Google Scholar
Yonts, D. C. and Smith, J. A. 1997. Effects of plant population and row width on yield of sugarbeet. J. Sugar Beet Res. 34:2130.Google Scholar