Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T06:33:45.308Z Has data issue: false hasContentIssue false

Weed Efficacy Evaluations for Bromoxynil, Glufosinate, Glyphosate, Pyrithiobac, and Sulfosate

Published online by Cambridge University Press:  20 January 2017

Jerry L. Corbett
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
Shawn D. Askew
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
Walter E. Thomas
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
John W. Wilcut*
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: [email protected]

Abstract

Thirteen field trials were conducted in 1999 and 2000 to evaluate postemergence (POST) weed control with single applications of bromoxynil at 420 or 560 g ai/ha, glufosinate at 291 or 409 g ai/ha, glyphosate at 1,120 g ai/ha, pyrithiobac at 36 or 72 g ai/ha, or sulfosate at 1,120 g ai/ha. Additional treatments evaluated included two applications with glufosinate at both rates in all possible combinations, two applications of glyphosate, and two applications of sulfosate. Weeds were 2 to 5 cm or 8 to 10 cm tall for annual grass and broadleaf weeds whereas yellow nutsedge and glyphosate-resistant corn were 8 to 10 cm tall. All herbicide treatments controlled 2- to 5-cm common cocklebur, Florida beggarweed, jimsonweed, ladysthumb smartweed, Pennsylvania smartweed, pitted morningglory, prickly sida, redroot pigweed, smooth pigweed, and velvetleaf at least 90%. All herbicide treatments except pyrithiobac at either rate controlled 2- to 5-cm common lambsquarters, common ragweed, and tall morningglory at least 90%; pyrithiobac at the lower rate was the only treatment that failed to control entireleaf and ivyleaf morningglory at least 90%. Bromoxynil and pyrithiobac at either rate controlled 2- to 5-cm sicklepod 33 to 68% whereas glufosinate, glyphosate, and sulfostate controlled ≥99%. Glyphosate and sulfosate applied once or twice controlled hemp sesbania less than 70% and volunteer peanut less than 80%. Bromoxynil and pyrithiobac were the least effective treatments for control of annual grass species and bromoxynil controlled Palmer amaranth less than 80%. Glufosinate controlled broadleaf signalgrass, fall panicum, giant foxtail, green foxtail, large crabgrass, yellow foxtail, seedling johnsongrass, Texas panicum, and glyphosate-resistant corn at least 90% but controlled goosegrass less than 60%. Glyphosate and sulfosate controlled all grass species except glyphosate-resistant corn at least 90%. In greenhouse research, goosegrass could be controlled with glufosinate POST plus a late POST-directed treatment of prometryn plus monosodium salt of methylarsonic acid.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Askew, S. D., Bailey, W. A., Scott, G. H., and Wilcut, J. W. 2002. Economic assessment of weed management for transgenic and nontransgenic cotton in tilled and nontilled systems. Weed Sci. 50:512520.CrossRefGoogle Scholar
Askew, S. D. and Wilcut, J. W. 1999. Cost and weed management with herbicide programs in glyphosate-resistant cotton (Gossypium hirsutum). Weed Technol. 13:308313.CrossRefGoogle Scholar
Askew, S. D. and Wilcut, J. W. 2002a. Ladysthumb interference and seed production in cotton. Weed Sci. 50:326332.Google Scholar
Askew, S. D. and Wilcut, J. W. 2002b. Pennsylvania smartweed interference and achene production in cotton. Weed Sci. 50:350356.Google Scholar
Bailey, W. A., Askew, S. D., Dorai-Raj, S., and Wilcut, J. W. 2003a. Velvetleaf (Abutilon theophrasti) interference and seed production dynamics in cotton. Weed Sci. 57:94101.CrossRefGoogle Scholar
Bailey, W. A., Wilcut, J. W., and Hayes, R. M. 2003b. Weed management, fiber quality, and net returns in no-tillage transgenic and nontransgenic cotton (Gossypium hirsutum). Weed Technol. 17:117126.CrossRefGoogle Scholar
Blair, L. K., Dotray, P. A., Keeling, J. W., Gannaway, J. R., Lyon, L. L., Quisenberry, J. E., and Oliver, M. J. 2000. Crop tolerance and weed management in Liberty (glufosinate)-tolerant cotton. Proc. Beltwide Cotton Conf. 2:14581459.Google Scholar
Bradley, P. R., Johnson, W. G., Hart, S. E., Buesinger, M. L., and Masey, R. E. 2000. Economics of weed management in glufosinate-resistant corn (Zea mays). Weed Technol. 14:495501.Google Scholar
Bridges, D. C. 1999. General overview of weeds in crop systems. in Ruberson, J. R., ed. Handbook of Pest Management. New York: Marcel Dekker. Pp. 547566.Google Scholar
Buchanan, G. A. 1992. Trends in weed control methods. in McWhorter, C. G. and Abernathy, J. R., eds. Weeds of Cotton: Characterization and Control. Memphis, TN: The Cotton Foundation. Pp. 4772.Google Scholar
Byrd, J. D. Jr. 2000. Report of the 1999 Cotton Weed Loss Committee. Proc. Beltwide Cotton conf. 2:14551458.Google Scholar
Corbett, J. L., Askew, S. D., Porterfield, D., and Wilcut, J. W. 2002. Bromoxynil, prometryn, pyrithiobac, and MSMA weed management systems for bromoxynil-resistant cotton (Gossypium hirsutum). Weed Technol. 16:712718.Google Scholar
Culpepper, A. S. and York, A. C. 1997. Weed management in bromoxynil-tolerant cotton (Gossypium hirsutum). Weed Technol. 11:335345.Google Scholar
Culpepper, A. S. and York, A. C. 1998. Interactions of bromoxynil and postemergence graminicides on large crabgrass (Digitaria sanguinalis). Weed Technol. 12:554559.Google Scholar
Culpepper, A. S. and York, A. C. 1999a. Weed management in glufosinate-resistant corn (Zea mays). Weed Technol. 13:324333.CrossRefGoogle Scholar
Culpepper, A. S. and York, A. C. 1999b. Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum). Weed Technol. 13:411420.Google Scholar
Culpepper, A. S., York, A. C., Batts, R. B., and Jennings, K. M. 2000. Weed management in glufosinate- and glyphosate-resistant soybean (Glycine max). Weed Technol. 14:7788.CrossRefGoogle Scholar
Culpepper, A. S., York, A. C., and Brownie, C. 1999. Influence of bromoxynil on annual grass control by graminicides. Weed Sci. 47:123128.Google Scholar
Dotray, P. A., Keeling, J. W., Henniger, C. G., and Abernathy, J. R. 1996. Palmer amaranth (Amaranthus palmeri) and devils-claw (Probascidea louisianica) control in cotton (Gossypium hirsutum) with pyrithiobac. Weed Technol. 10:712.Google Scholar
Dowler, C. C. 1998. Weed survey-southern states. Proc. South. Weed Sci. Soc. 51:299322.Google Scholar
Ellis, J. M. and Griffin, J. L. 2002. Benefits of soil-applied herbicides in glyphosate-resistant soybean (Glycine max). Weed Technol. 16:541547.CrossRefGoogle Scholar
Fischer, D. W. and Harvey, R. G. 2002. Yellow nutsedge (Cyperus esculentus) and annual weed control in glyphosate-resistant field corn (Zea mays). Weed Technol. 16:482487.CrossRefGoogle Scholar
Frans, R., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. in Camper, N. D., ed. Research Methods in Weed Science. 3rd ed. Champaign, IL: Southern Weed Science Society. pp. 3738.Google Scholar
Gimenez, A. E., York, A. C., Wilcut, J. W., and Batts, R. B. 1998. Annual grass control by glyphosate plus bentazon, chlorimuron, fomesafen, or imazethapyr mixtures. Weed Technol. 12:134136.CrossRefGoogle Scholar
Hamill, A. S., Knezevic, S. Z., Chandler, K., Sikkema, P. H., Tardif, F., Shrestha, A., and Swanton, C. J. 2000. Weed control in glufosinate-resistant corn (Zea mays). Weed Technol. 14:578585.Google Scholar
Holt, T. J., Wilcut, J. W., McLean, H. S., and Richburg, J. S. III. 1994. Zorial mixtures with Cotoran or Karmex for weed control in cotton. Proc. Beltwide Cotton Conf. 2:1699.Google Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993a. Influence of application rate and timing on efficacy of DPX-PE350 applied postemergence. Weed Technol. 7:216219.Google Scholar
Jordan, D. L., Wilcut, J. W., and Richburg, J. S. III. 1993b. Utilization of DPX-PE350 for weed control in peanut (Arachis hypogaea). Peanut Sci. 20:97101.Google Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.Google Scholar
Krausz, R., Kapusta, G., and Matthews, J. L. 1996. Control of annual weeds with glyphosate. Weed Technol. 10:957962.Google Scholar
Lanclos, D. Y., Webster, E. P., and Zhang, W. 2002. Glufosinate tank-mix combinations in glufosinate-resistant rice (Oryza sativa). Weed Technol. 16:659663.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.Google Scholar
Nelson, K. A. and Renner, K. A. 2002. Yellow nutsedge (Cyperus esculentus) control and tuber production with glyphosate and ALS-inhibiting herbicides. Weed Technol. 16:512519.CrossRefGoogle Scholar
Parks, R. J., Curran, W. S., Roth, G. W., Hartwig, N. L., and Calvin, D. D. 1995. Common lambsquarters (Chenopodium album) control in corn (Zea mays) with postemergence herbicides and cultivation. Weed Technol. 4:728735.CrossRefGoogle Scholar
Paulsgrove, M. D. and Wilcut, J. W. 1999. Weed management in bromoxynil-resistant Gossypium hirsutum . Weed Sci. 47:596601.Google Scholar
Paulsgrove, M. D. and Wilcut, J. W. 2001. Weed management with pyrithiobac preemergence in bromoxynil-resistant cotton. Weed Sci. 49:567570.Google Scholar
Porterfield, D., Wilcut, J. W., and Askew, S. D. 2002. Weed management with CGA-362622, fluometuron, and prometryn in cotton. Weed Sci. 50:642647.Google Scholar
Porterfield, D., Wilcut, J. W., Wells, J. W., and Clewis, S. B. 2003. Weed management with CGA-362622 in transgenic and nontransgenic cotton. Weed Sci. 51:10021009.Google Scholar
Richburg, J. S. III, Wilcut, J. W., and Ingram, E. G. 1994. Weed efficacy with Buctril and Roundup. Proc. Beltwide Cotton Conf II:1702.Google Scholar
[SAS] Statistical Analysis Systems. 1998. SAS/STAT User's Guide. Release 7.00. Cary, NC: Statistical Analysis Systems Institute. 1028 p.Google Scholar
Scott, G. H., Askew, S. D., Bennett, A. C., and Wilcut, J. W. 2001. Economic evaluation of HADSS computer program for weed management in nontransgenic and transgenic cotton. Weed Sci. 49:549557.Google Scholar
Scott, G. H., Askew, S. D., and Wilcut, J. W. 2002. Glyphosate systems for weed control in glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technol. 16:191198.CrossRefGoogle Scholar
Scott, G. H., Askew, S. D., Wilcut, J. W., and Brownie, C. 2000. Datura stramonium interference and seed rain in Gossypium hirsutum . Weed Sci. 48:613617.Google Scholar
Snipes, C. E., Colvin, D. L., Patterson, M. G., and Crawford, S. H. 1992. Cotton (Gossypium hirsutum) yield response to cultivation timing and frequency. Weed Technol. 6:3135.Google Scholar
Snipes, C. E. and Mueller, T. C. 1992. Cotton (Gossypium hirsutum) yield response to mechanical and chemical weed control systems. Weed Sci. 42:249254.Google Scholar
Snipes, C. E., Walker, R. H., Whitwell, T., Buchanan, G. A., McGuire, J. A., and Martin, N. R. 1984. Efficacy and economics of weed control methods in cotton (Gossypium hirsutum). Weed Sci. 32:95100.Google Scholar
Steckel, G. J., Wax, L. M., Simmons, F. W., and Phillips, W. H. II. 1997. Glufosinate efficacy is influenced by rate and growth stage. Weed Technol. 11:484488.Google Scholar
Sunderland, S. L., Burton, J. D., Coble, H. D., and Maness, E. P. 1995. Physiological mechanisms for tall morningglory (Ipomoea purpurea) resistance to DPX-PE350. Weed Sci. 43:2127.Google Scholar
Tingle, C. H., Shaw, D. R., and Ellis, J. M. 1996. Weed control programs in glufosinate-resistant soybean. Proc. South. Weed Sci. Soc. 49:191.Google Scholar
Troxler, S. C., Askew, S. D., Wilcut, J. W., Smith, W. D., and Paulsgrove, M. D. 2002. Clomazone, fomesafen, and bromoxynil systems for bromoxynil-resistant cotton (Gossypium hirsutum). Weed Technol. 16:838844.CrossRefGoogle Scholar
Wilcut, J. W. 1998. Influence of pyrithiobac sodium on purple (Cypersus rotundus) and yellow nutsedge (C. esculentus). Weed Sci. 46:111115.CrossRefGoogle Scholar
Wilcut, J. W. and Askew, S. D. 1999. Chemical approaches to weed management. in Ruberson, J. R., ed. Handbook of Pest Management. New York: Marcel Dekker. Pp. 627661.Google Scholar
Wilcut, J. W., Coble, H. D., York, A. C., and Monks, D. W. 1996. The niche for herbicide-resistant crops in U.S. agriculture. in Duke, S. O., ed. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. Boca Raton, FL: CRC. Pp. 213230.Google Scholar
Wilcut, J. W. and Hinton, J. D. 1997. Staple and MSMA systems for weed control in cotton. Proc. Beltwide Cotton Conf. 1:771.Google Scholar
Wilcut, J. W., Jordan, D. L., Vencill, W. K., and Richburg, J. S. III. 1997. Weed management in cotton (Gossypium hirsutum) with soil-applied and post-directed herbicides. Weed Technol. 11:221226.Google Scholar
Wilcut, J. W., York, A. C., and Jordan, D. L. 1995. Weed management systems for oil seed crops. in Smith, A. E., ed. Handbook of Weed Management Systems. New York: Marcel Dekker. Pp. 343400.Google Scholar
York, A. C. and Culpepper, A. S. 2000. Weed management in cotton. in Edmisten, K. L., ed. 2000 Cotton Information. Publication AG-417. Raleigh, NC: North Carolina Cooperative Extension Service. Pp. 69111.Google Scholar
York, A. C., Jordan, D. L., and Wilcut, J. W. 1994. Peanut (Arachis hypogaea) control in rotational crops. Peanut Sci. 21:4043.Google Scholar