Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T19:31:07.395Z Has data issue: false hasContentIssue false

Weed Ecology and Nonchemical Management under Strip-Tillage: Implications for Northern U.S. Vegetable Cropping Systems

Published online by Cambridge University Press:  20 January 2017

Daniel C. Brainard*
Affiliation:
Department of Horticulture, Michigan State University, A440 A Plant and Soil Sciences Building, 1055 Bogue Street, East Lansing, MI 48824
R. Edward Peachey
Affiliation:
Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331
Erin R. Haramoto
Affiliation:
Department of Horticulture, Michigan State University, A440 A Plant and Soil Sciences Building, 1055 Bogue Street, East Lansing, MI 48824
John M. Luna
Affiliation:
Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331
Anusuya Rangarajan
Affiliation:
Department of Horticulture, Cornell University, 121 Plant Sciences Building, Ithaca, NY 14853
*
Corresponding author's E-mail: [email protected]

Abstract

In northern U.S. vegetable cropping systems, attempts at no-till (NT) production have generally failed because of poor crop establishment and delayed crop maturity. Strip tillage (ST) minimizes these problems by targeting tillage to the zone where crops are planted while maintaining untilled zones between crop rows, which foster improvements in soil quality. ST has been shown to maintain crop yields while reducing energy use and protecting soils in vegetable crops, including sweet corn, winter squash, snap bean, carrot, and cole crops. Despite potential benefits of ST, weed management remains an important obstacle to widespread adoption. Increased adoption of ST in cropping systems for which effective, low-cost herbicides are either limited (e.g., most vegetable crops) or prohibited (e.g., organic systems) will require integration of multiple cultural, biological, and mechanical approaches targeting weak points in weed life cycles. Weed population dynamics under ST are more complex than under either full-width, conventional tillage (CT) or NT because weed propagules—as well as factors influencing them—can move readily between zones. For example, the untilled zone in ST may provide a refuge for seed predators or a source of slowly mineralized nitrogen, which affects weed seed mortality and germination in the tilled zone. Greater understanding of such interzonal interactions may suggest manipulations to selectively suppress weeds while promoting crop growth in ST systems. Previous studies and recent experiences in ST vegetable cropping systems suggest a need to develop weed management strategies that target distinct zones while balancing crop and soil management tradeoffs. For example, in untilled zones, optimal management may consist of weed-suppressive cover crop mulching, combined with nitrogen exclusion and high-residue cultivation as needed. In contrast, weed management in the tilled zone may benefit from innovations in precision cultivation and flame-weeding technologies. These short-term strategies will benefit from longer-term approaches, including tillage-rotation, crop rotation, and cover cropping strategies, aimed at preventing seed production, promoting seed predation and decay, and preventing buildup of problematic perennial weeds. However, a concerted research effort focused on understanding weed populations as well as testing and refining integrated weed management strategies will be necessary before ST is likely to be widely adopted in vegetable cropping systems without increased reliance on herbicides.

En los sistemas de cultivos de vegetales del norte de Estados Unidos, los intentos de producción con cero labranza (NT) generalmente han fallado debido a un establecimiento pobre y madurez tardía del cultivo. El cultivo en bandas (ST) minimiza estos problemas al enfocar la labranza en la zona donde los cultivos son plantados mientras que mantiene zonas sin labrar entre las líneas del cultivo, lo cual mejora la calidad del suelo. ST ha mostrado la capacidad de mantener el rendimiento del cultivo al tiempo que reduce el uso de energía y protege el suelo en cultivos de vegetales, incluyendo maíz dulce, calabacín de invierno, frijol común, zanahoria y coles. A pesar de los beneficios potenciales de ST, el manejo de malezas continúa siendo un obstáculo importante para su mayor adopción. El incremento en la adopción de ST en sistemas de cultivos para los cuales herbicidas efectivos y de bajo costo son, ya sea, limitados (e.g., mayoría de cultivos de vegetales) o prohibidos (e.g., sistemas orgánicos), requerirá la integración de múltiples estrategias culturales, biológicas, y mecánicas dirigidas a los puntos débiles en los ciclos de vida de las malezas. Las dinámicas de poblaciones de las malezas en ST son más complejas que en labranza de cobertura total, labranza convencional (CT) o NT, porque los propágulos de las malezas, además de los factores que los influencian, pueden moverse ampliamente entre zonas. Por ejemplo, la zona no labrada en ST podría proveer refugio para depredadores de semillas o podría ser una fuente de nitrógeno de lenta mineralización, los cuales afectan la mortalidad y la germinación de las semillas de las malezas en la zona labrada. Un mayor entendimiento de tales interacciones entre zonas podría sugerir manipulaciones para suprimir las malezas selectivamente mientras se promueve el crecimiento del cultivo en sistemas ST. Estudios previos y experiencias recientes en sistemas de cultivos de vegetales en ST indican la necesidad de desarrollar estrategias de manejo de malezas que apuntan a zonas específicas mientras balancean los conflictos entre el manejo del cultivo y del suelo. Por ejemplo, en zonas sin labrar, el manejo óptimo podría consistir en usar cultivos de cobertura para la supresión de malezas, en combinación con la exclusión de nitrógeno y el uso del cultivo con altos residuos cuando sea necesario. En contraste, el manejo de malezas en la zona labrada podría beneficiarse de innovaciones en tecnología de cultivadores de precisión y de quemadores de llama. Estas estrategias de corto plazo se beneficiarán de estrategias de largo plazo orientadas a prevenir la producción de semillas, promover la depredación y degradación de semillas, y a prevenir el incremento de malezas perennes problemáticas. Sin embargo, un esfuerzo concertado de investigación enfocado no solo en entender las poblaciones de malezas, sino que en evaluar y refinar las estrategias integradas de malezas, será necesario antes de que ST sea ampliamente adoptada en sistemas de cultivos de vegetales sin una dependencia mayor en herbicidas.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andow, D. A., Nicholson, A. G., Wien, H. C., and Willson, H. R. 1986. Insect populations on cabbage grown with living mulches. Environ. Entomol. 15 :293299.Google Scholar
Ascard, J. and Fogelberg, F. 2008. Mechanical in-row weed control in transplanted and direct-sown bulb onions. Biol. Agric. Hortic. 25 :235251.Google Scholar
Banks, P. A. and Robinson, E. L. 1986. Soil reception and activity of acetochlor, alachlor, and metolachlor as affected by wheat (Triticum aestivum) straw and irrigation. Weed Sci. 34 :607611.Google Scholar
Barberi, P., Silvestri, N., Peruzzi, A., and Raffaelli, M. 2000. Finger harrowing of durum wheat under different tillage systems. Biol. Agric. Hortic. 17 :285303.Google Scholar
Barralis, G. and Chadoeuf, R. 1980. Study of the dynamics of a weed community, 1: evolution of the weed flora during the growth-cycle of a crop. Weed Res. 20 :231237.Google Scholar
Blackshaw, R. E., Brandt, R. N., Janzen, H. H., Entz, T., Grant, C. A., and Derksen, D. A. 2003. Differential response of weed species to added nitrogen. Weed Sci. 51 :532539.Google Scholar
Blevins, R. L., Thomas, G. W., Smith, M. S., Frye, W. W., and Cornelius, P. L. 1983. Changes in soil properties after 10 years continuous non-tilled and conventionally tilled corn. Soil Tillage Res. 3 :135146.Google Scholar
Bottenberg, H., Massiunas, J., and Eastman, C. 1999. Strip tillage reduces yield loss of snap- bean planted in rye mulch. Horttechnology 9 :235240.Google Scholar
Bowman, G. 1997. Steel in the field: a farmer's guide to weed management tools. Burlington, VT : Sustainable Agriculture Publications, University of Vermont. 128 p.Google Scholar
Brainard, D. C. and Noyes, D. C. 2012. Strip-tillage and compost influence carrot quality, yield and net returns. Hortscience 47 :10731079.Google Scholar
Brainard, D. C., Haramoto, E., and Noyes, D. 2012a. Tillage and cover crop effects on weed management in snap beans. Abstract 57 in Proceedings of the 52nd Meeting of the Weed Science Society of America, Waikoloa, HI. Champaign, IL : WSSA.Google Scholar
Brainard, D. C., Henshaw, B., and Snapp, S. 2012b. Hairy vetch varieties and bi-cultures influence cover crop services in strip-tilled sweet corn. Agron J. 104 :629638.Google Scholar
Brust, G. E. and House, G. J. 1988. Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems. Am. J. Altern. Agric. 3 :1925.Google Scholar
Bryant, A., Brainard, D. C., and Szendrei, Z. 2012. Cover crop mulch and strip tillage influence biological control in cabbage (Brassica oleracea). Abstract 0650 in Entomology 2010: ESA 60th Annual Meeting, Knoxville. TN. Lanham, MD : Entomological Society of America.Google Scholar
Buhler, D. 1995. Influence of tillage systems on weed population dynamics and management in corn and soybean in the central USA. Crop Sci. 35 :12471258.Google Scholar
Buhler, D. D. and Daniel, T. C. 1988. Influence of tillage systems on giant foxtail (Setaria faberi) and velvetleaf (Abutilon theophrasti) population and control in corn (Zea mays). Weed Sci. 36 :642647.Google Scholar
Buhler, D. D., Hartzler, R. G., and Forcella, F. 1997. Implications of weed weedbank dynamics to weed management. Weed Sci. 45 :329336.Google Scholar
Cardina, J., Norquay, H. M., Stinner, B. R., and McCartney, D. A. 1996. Postdispersal predation of velvetleaf (Abutilon theophrasti) seeds. Weed Sci. 44 :534539.Google Scholar
Cardina, J., Regnier, E., and Harrison, K. 1991. Long-term effects on seed banks in three Ohio soils. Weed Sci. 39 :186194.Google Scholar
Carmona, D. M. and Landis, D. A. 1999. Influence of refuge habitats and cover crops on seasonal activity-density of ground beetles (Coleoptera: Carabidae) in field crops. Environ. Entomol. 28 :11451153.Google Scholar
Cochran, V. L., Morrow, L. A., and Schirman, R. D. 1990. The effect of N placement on grass weeds and winter wheat responses in three tillage systems. Soil Tillage Res. 18 :347355.Google Scholar
Collins, K. L., Boatman, N. D., Wilcox, A., and Holland, J. M. 2003. Effects of different grass treatments used to create over-wintering habitat for predatory arthropods on arable farmland. Agric. Ecosyst. Environ. 96 :5967.Google Scholar
Cousens, R. and Mortimer, M. 1995. Dynamics of Weed Populations. New York : Cambridge University Press. 332 p.Google Scholar
Crawley, M. J. 1992. Seed predators and plant population dynamics. Pages 157191 in Fenner, M., ed. Seeds: The Ecology of Regeneration in Plant Communities. Melksham, UK : Redwood.Google Scholar
Creamer, N. G. and Dabney, S. M. 2002. Killing cover crops mechanically: review of recent literature and assessment of new research results. Am. J. Altern. Agric. 17 :3240.Google Scholar
Cromar, H. E., Murphy, S. D., and Swanton, C. J. 1999. Influence of tillage and crop residue on post-dispersal predation of weed seeds. Weed Sci. 47 :184194.Google Scholar
Ditomaso, J. 1995. Approaches for improving crop competitiveness through the manipulation of fertilization strategies. Weed Sci. 43 :491497.Google Scholar
Doran, J. W. 1987. Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils. Biol. Fertil. Soils 5 :6875.Google Scholar
Duerinckx, K., Mouazen, A. M., Anthonis, J., and Ramon, H. 2005. Effects of spring-tine settings and operational conditions on the mechanical performance of a weed harrow tine. Biosyst. Eng. 91 :2134.Google Scholar
Eco-Dan. 2012. Steketee Eco-Dan Automatic Steering System. http://www.steketee.com/product/ECO-DAN-automatic-Steering-system. Accessed: January 10, 2012.Google Scholar
Forcella, F. 2009. Potential of air-propelled abrasives for selective weed control. Weed Technol. 23 :317320.Google Scholar
Gallandt, E. 2006. How can we target the weed seedbank? Weed Sci. 54 :588596.Google Scholar
Givens, W. A., Shaw, D. R., Kruger, G. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M.D.K., and Jordan, D. 2009. Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol. 23 :150155.Google Scholar
Grandy, A. S. and Robertson, G. P. 2006. Aggregation and organic matter protection following tillage of a previously uncultivated soil. Soil Sci. Soc. Am. J. 70 :13981406.Google Scholar
Green, J. 2010. Structuring Habitat to Conserve Ground Beetles (Coleoptera: Carabidae) and Reduce Summer Annual Weeds in Agroecosystems. . Corvallis, OR : Oregon State University. http://hdl.handle.net/1957/19544.Google Scholar
Grubinger, V. P. and Minotti, P. L. 1990. Managing white clover living mulch for sweet corn production with partial rototilling. Am. J. Alternative Agr. 5 : 412.Google Scholar
Gruver, J. 2011. Cover Crops: At the Crossroads. 2011 IL Regional Tillage Seminar. http://practicalfarmers.org/images/pdfs/Joel%20Gruver%20WIU:%20Cover%20Crops%20at%20the%20Crossroads.pdf. Accessed: August 12, 2012.Google Scholar
Gunsolus, J. L. 1990. Mechanical and cultural weed control in corn and soybeans. Am. J. Altern. Agric. 5 :115119.Google Scholar
Haramoto, E. R. and Brainard, D. C. 2011. Weed emergence and growth in strip-tilled systems: Separating the effects of tillage, cover crops, and crop competition. Abstract 88 in Proceedings of the Weed Science Society of America Annual Meeting, Portland, OR. Champaign, IL : WSSA.Google Scholar
Haramoto, E. R. and Brainard, D. C. 2012. Strip tillage and oat cover crops affect soil moisture and N mineralization patterns in cabbage. Hortscience 47 : 15961602 Google Scholar
Haramoto, E. R. and Gallandt, E. R. 2004. Brassica cover cropping for weed management: a review. Renew. Agric. Food Syst. 19 :187198.Google Scholar
Hartke, A., Drummond, F. A., and Liebman, M. 1998. Seed feeding, seed caching, and burrowing behaviors of Harpalus rufipes De Geer larvae (Coleoptera: Carabidae) in the Maine potato agroecosystem. Biol. Control 13 :91100.Google Scholar
Hendrix, B. J., Young, B. G., and Chong, S. 2004. Weed management in strips tillage corn. Agron. J. 96 :229235.Google Scholar
Hoyt, G. D. 1999. Tillage and cover residue effects on vegetable yields. Horttechnology 9 :351358.Google Scholar
Hoyt, G. D., Bonnano, A. R., and Parker, G. C. 1996. Influence of herbicides and tillage on weed control, yield and quality of cabbage (Brassica oleracea L. Var. capitata). Weed Technol. 10 :5054.Google Scholar
Hoyt, G. D., Monks, D. W., and Monaco, T. J. 1994. Conservation tillage for vegetable production. Horttechnology 4 :129135.Google Scholar
Janzen, D. H. 1971. Seed predation by animals. Annu. Rev. Ecol. Syst. 2 :465492.Google Scholar
Kurstjens, D.A.G. 2007. Precise tillage systems for enhanced non-chemical weed management. Soil Tillage Res. 97 :293305. DOI:.Google Scholar
Kurstjens, D.A.G. and Kropff, J. J. 2001. The impact of uprooting and soil-covering on the effectiveness of weed harrowing. Weed Res. 41 :211228.Google Scholar
Lal, R., Griffen, M., Apt, J., Lave, L., and Morgan, M. G. 2004. Managing soil carbon. Science 304 :393.Google Scholar
Leavitt, M. J., Sheaffer, C. C., and Wyse, D. L. 2011. Rolled winter rye and hairy vetch cover crops lower weed density but reduce vegetable yields in no-tillage organic production. Hortscience 46 :387395.Google Scholar
Leblanc, M. L., Cloutier, D. C., and Stewart, K. A. 2006. Rotary hoe cultivation in sweet corn. Horttechnology 16 :583589.Google Scholar
Liebman, M. and Davis, A. S. 2000. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res. 40 :2747.Google Scholar
Locke, M. A. and Bryson, C. T. 1997. Herbicide–soil interactions in reduced tillage and plant residue management systems. Weed Sci. 45 :307320.Google Scholar
Lonsbary, S. K., O'Sullivan, J., and Swanton, C. J. 2004. Reduced tillage alternatives for machine- harvested cucumbers. Hortscience 39 :991995.Google Scholar
Lowry, C. J. and Brainard, D. C. 2012. Make the most of your compost: impact of compost rate and placement on suppression of weed emergence. Abstract 141 in Weed Science Society of America Annual Meeting, Waikoloa, HI. Champaign, IL : WSSA.Google Scholar
Luna, J. M. and Staben, M. L. 2002. Strip tillage for sweet corn production: yield and economic return. Hortscience 37 :10401044.Google Scholar
Luna, J. M., Mitchell, J. P., and Shrestha, A. 2012. Conservation tillage in organic agriculture: evolution toward hybrid systems in the Western USA. Renew. Agric. Food Syst. 27 :2130.Google Scholar
MacLeod, A., Wratten, S. D., Sotherton, N. W., and Thomas, M. B. 2004. ‘Beetle banks' as refuges for beneficial arthropods in farmland: long-term changes in predator communities and habitat. Agric. For. Entomol. 6 :147154.Google Scholar
Marino, P. C., Gross, K. L., and Landis, D. A. 1997. Weed seed loss due to predation in Michigan maize fields. Agric. Ecosyst. Environ. 66 :189196.Google Scholar
Marino, P. C., Westerman, P. R., Pinkert, C., and van der Werf, W. 2005. Influence of seed density and aggregation on post-dispersal weed seed predation in cereal fields. Agric. Ecosyst. Environ. 106 :1725.Google Scholar
Melander, B. 1997. Optimization of the adjustment of a vertical axis rotary brush weeder for intra-row weed control in row crops. J. Agric. Eng. Res. 68 :3950.Google Scholar
Melander, B. and Kristensen, J. K. 2011. Soil steaming effects on weed seeding emergence under the influence of soil type, soil moisture, soil structure and heat duration. Ann. Appl. Biol. 158 :194203.Google Scholar
Melander, B., Rasmussen, I. A., and Barberi, P. 2005. Integrating physical and cultural methods of weed control—examples of European research. Weed Sci. 53 :369381.Google Scholar
Melander, B., Heisel, T., and Jørgensen, M. H. 2002. Band-steaming for intra-row weed control. Pages 216219 in Proceedings of the 5th EWRS Workshop on Physical and Cultural Weed Control, Pisa, Italy, March 11–13, 2002. Doorwerth, The Netherlands : European Weed Research Society.Google Scholar
Menalled, F. D., Buhler, D. D., and Liebman, M. 2005. Composted swine manure effects on germination and early growth of crop and weed species under greenhouse conditions. Weed Technol. 19 :784789.Google Scholar
Menalled, F. D., Lee, J. C., and Landis, D. A. 2001. Herbaceous filter strips in agroecosystems: implications for ground beetle (Coleoptera: Carabidae) conservation and invertebrate weed seed predation. Gt. Lakes Entomol. 34 :7791.Google Scholar
Mochizuki, M. J., Rangarajan, A., Bellinder, R. R., Björkman, T. N., and Van Es, H. M. 2007. Overcoming compaction limitations on cabbage growth and yield in the transition to conservation tillage. Hortscience 42 :16901694.Google Scholar
Mochizuki, M. J., Rangarajan, A., Bellinder, R. R., Björkman, T., and Van Es, H. M. 2008. Rye mulch management affects short-term indicators of soil quality in the transition to conservation tillage for cabbage. Hortscience 43 :862867.Google Scholar
Mohler, C. L. 2001. Mechanical management of weeds. Pages 139209 in Liebman, M., Mohler, C. L., and Staver, C. P., eds. Ecological Management of Agricultural Weeds. New York : Cambridge University Press.Google Scholar
Mohler, C. L. and Teasdale, J. R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res. 33 :487499.Google Scholar
Mohler, C. L., Frisch, J. C., and McCulloch, C. E. 2006. Vertical movement of weed seed surrogates by tillage implements and natural processes. Soil Tillage Res. 86 :110122.Google Scholar
Mohler, C. L., Frisch, J. C., and Mt. Pleasant, J. 1997. Evaluation of mechanical weed management programs for corn (Zea mays). Weed Technol. 11 :123131.Google Scholar
Navntoft, S., Wratten, S. D., Kristensen, K., and Esbjerg, P. 2009. Weed seed predation in organic and conventional fields. Biol. Control 49 :1116.Google Scholar
NeSmith, D. S., Hoogenboom, G., and McCraken, D. V. 1994. Summer squash production using conservation tillage. Hortscience 29 :2830.Google Scholar
Nørremark, M., Sørensen, C. G., and Jørgensen, R. N. 2006. Hortibot: comparison of present and future phytotechnologies for weed control—part III. Paper 067023 in ASABE Annual International Meeting Papers. St. Joseph, MI: American Society of Agricultural and Biological Engineers. 14 p.Google Scholar
Norsworthy, J. K., McClelland, M., Griffith, G., Bangarwa, S. K., and Still, J. 2011. Evaluation of cereal and Brassicaceae cover crops in conservation-tillage, enhanced, glyphosate-resistant cotton. Weed Technol. 25 :613.Google Scholar
O'Rourke, M. E., Rice, M. E., Liebman, M., and Heggenstaller, A. H. 2006. Post-dispersal weed seed predation by invertebrates in conventional and low-external-input crop rotation systems. Agric. Ecosyst. Environ. 116 :280288.Google Scholar
Overstreet, L. F. 2009. Strip tillage for sugarbeet production. Int. Sugar J. 111 :292304.Google Scholar
Overstreet, L. F. and Hoyt, G. D. 2008. Effects of strip-tillage and production inputs on soil biology across a spatial gradient. Soil Sci. Soc. Am. J. 72 :14541463.Google Scholar
Overstreet, L. F., Hoyt, G. D., and Imbriani, J. 2010. Comparing nematode and earthworm communities under combinations of conventional and conservation vegetable production practices. Soil Tillage Res. 110 :4250.Google Scholar
Peachey, R. E., William, R. D., and Mallory-Smith, C. 2006. Effect of spring tillage sequence on summer annual weeds in vegetable row crop. Weed Technol. 20 :204214.Google Scholar
Peruzzi, A., Ginanni, M., Fontanelli, M., Raffaelli, M., and Barberi, P. 2007. Innovative strategies for on-farm weed management in organic carrot. Renew. Agric. Food Syst. 22 :246259.Google Scholar
Pollard, F. and Cussans, G. W. 1981. The influence of tillage on the weed flora in a succession of winter cereal crops grown on a sandy loam soil. Weed Res. 21 :185190.Google Scholar
Raffaelli, M., Fontanelli, M., Frasconi, C., Ginanni, M., and Peruzzi, A. 2010. Physical weed control in protected leaf-beet in central Italy. Renew. Agric. Food Syst. 25 :815.Google Scholar
Rangarajan, A. 2008. Optimizing reduced tillage for root, leafy, and organic vegetables grown in the Northeast. College Park, MD : Sustainable Agriculture Research and Education, Report LNE06-245. http://mysare.sare.org/mySARE/ProjectReport.aspx?do=viewRept&pn=LNE06-245&y=2008&t=0. Accessed April 27, 2012.Google Scholar
Rasmussen, K., Rasmussen, J., and Petersen, J. 1996. Effects of fertilizer placement on weeds in weed harrowed spring barley. Acta Agric. Scand. Sect. A Anim. Sci. 46 :192196.Google Scholar
Roberts, H. A. and Stokes, F. G. 1965. Studies on the weeds of vegetable crops, V: final observations on an experiment with different primary cultivations. J. Appl. Ecol. 2 :307315.Google Scholar
Rostampour, S. 2010. Reducing Tillage in an Organic Vegetable System: In-Row Weed Control and Fertility Management. . Ithaca, NY : Cornell University.Google Scholar
Saska, P. 2004. Carabid larvae as predators of weed seeds: granivory in larvae of Amara eurynota (Coleoptera: Carabidae). Commun. Agric. Appl. Biol. Sci. 69 :2733.Google Scholar
Seguer, J. and Westerman, P. 2003. Conditions influencing the burial rate of weed seeds on the soil surface. Actas IX Congreso 2003 Sociedad Española de Malherbología, Barcelona, Spain, November 4–6, 2003. Madrid : SEM.Google Scholar
Shearin, A. F., Reberg-Horton, S., and Gallandt, E. 2007. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators. Environ. Entomol. 36 :11401146.Google Scholar
Smith, R. G., Gross, K. L., and Januchowski, S. 2005. Earthworms and weed seed distribution in annual crops. Agric. Ecosys. Environ. 108 :363367.Google Scholar
Strausbaugh, C. A. and Eujayl, I. 2012. Influence of sugarbeet tillage systems on the Rhizoctonia-bacterial root rot complex. J. Sugar Beet Res. 49 :5778.Google Scholar
Tarkalson, D. D., Bjorneberg, D. L., and Moore, A. 2012. Effects of tillage system and nitrogen supply on sugarbeet production. J. Sugar Beet Res. 49 :79102.Google Scholar
Teasdale, J. R. 1998. Cover crops, smother plants, and weed management. Pages 247270 in Hatfield, J. L., Buhler, D. D., and Stewart, B. A., eds. Integrated Weed and Soil Management. Chelsea, MI : Ann Arbor.Google Scholar
Teasdale, J. R. and Mohler, C. L. 2000. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 48 :385392.Google Scholar
van der Weide, R. Y., Bleeker, P. O., Achten, V.T.J.M., Lotz, L.A.P., Fogelberg, F., and Melander, B. 2008. Innovation in mechanical weed control in crop rows. Weed Res. 48 :215224.Google Scholar
Wagner-Riddle, C., Thurtell, G. W., Kidd, G. K., Beauchamp, E. G., and Sweetman, R. 1997. Estimates of nitrous oxide emissions from agricultural fields over 28 months. Can. J. Soil Sci. 77 :135144.Google Scholar
Wallace, R. W. and Bellinder, R. R. 1989. Potato (Solanum tuberosum) yields and weed populations in conventional and reduced tillage systems. Weed Technol. 3 :590595.Google Scholar
Walters, S. A. and Kindhart, J. D. 2002. Reduced tillage practices for summer squash production in southern Illinois. Horttechnology 12 :1114.Google Scholar
Wang, G. and Ngouajio, M. 2008. Integration of cover crop, conservation tillage, and low herbicide rate for machine-harvested pickling cucumbers. Hortscience 43 :17701774.Google Scholar
Westerman, P. R., Wes, J. S., Kropff, M. J., and van der Werf, W. 2003. Annual losses of weed seeds due to predation in organic cereal fields. J. Appl. Ecol. 40 :824836.Google Scholar