Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T17:49:20.876Z Has data issue: false hasContentIssue false

Weed Decision Threshold as a Key Factor for Herbicide Reductions in Site-Specific Weed Management

Published online by Cambridge University Press:  23 February 2017

Carolina San Martín*
Affiliation:
Department of Crop Protection, Instituto de Ciencias Agrarias, CSIC, Serrano 115 B, 28006 Madrid, Spain
Dionisio Andújar
Affiliation:
Department of Crop Protection, Instituto de Ciencias Agrarias, CSIC, Serrano 115 B, 28006 Madrid, Spain
Judit Barroso
Affiliation:
Department of Crop and Soil Science, Columbia Basin Agricultural Research Center, Oregon State University, Pendleton, OR, 97801
Cesar Fernández-Quintanilla
Affiliation:
Department of Crop Protection, Instituto de Ciencias Agrarias, CSIC, Serrano 115 B, 28006 Madrid, Spain
José Dorado
Affiliation:
Department of Crop Protection, Instituto de Ciencias Agrarias, CSIC, Serrano 115 B, 28006 Madrid, Spain
*
Corresponding author's E-mail: [email protected]

Abstract

The objective of this research was to explore the influence that weed decision threshold (DT; expressed as plants m−2), weed spatial distribution patterns, and spatial resolution of sampling have on potential reduction in herbicide use under site-specific weed management. As a case study, a small plot located in a typical corn field in central Spain was used, constructing very precise distribution maps of the major weeds present. These initial maps were used to generate herbicide prescription maps for each weed species based on different DTs and sampling resolutions. The simulation of herbicide prescription maps consisted of on/off spraying decisions based on information from two different approaches for weed detection: ground-based vs. aerial sensors. In general, simulations based on ground sensors resulted in higher herbicide savings than those based on aerial sensors. The extent of herbicide reductions derived from patch spraying was directly related to the density and the spatial distribution of each weed species. Herbicide savings were potentially high (up to 66%) with relatively sparse patchy weed species (e.g., johnsongrass) but were only moderate (10 to 20%) with abundant and regularly distributed weed species (e.g., velvetleaf). However, DT has proven to be a key factor, with higher DTs resulting in reductions in herbicide use for all the weed species and all sampling procedures and resolutions. Moreover, increasing DT from 6 to 12 plants m−2 resulted in additional herbicide savings of up to 50% in the simulations for johnsongrass and up to 28% savings in the simulations for common cocklebur. Nonetheless, since DT determines the accuracy of patch spraying, the consequences of using higher DTs could be leaving areas unsprayed, which could adversely affect crop yields and future weed infestations, including herbicide-resistant weeds. Considering that the relationship between DT and accuracy of herbicide application depends on weed spatial pattern, this work has demonstrated the possibility of using higher DT values in weeds with a clear patchy distribution compared with weeds distributed regularly.

El objetivo de esta investigación fue explorar la influencia que tienen el umbral de decisión para el control de malezas (DT; expresado como plantas m−2), los patrones de distribución espacial de malezas, y la resolución espacial del muestreo, sobre la reducción potencial en el uso de herbicidas con un manejo de malezas de sitio-específico. Como un caso de estudio, se usó una parcela pequeña localizada en un campo de maíz típico en el centro de España, para construir mapas muy precisos de distribución de las principales malezas presentes. Estos mapas iniciales fueron usados para generar mapas de prescripción de herbicidas para cada especie de maleza con base en diferentes DTs y resoluciones de muestreo. La simulación de mapas de prescripción de herbicidas consistió de decisiones de iniciar/detener la aspersión con base en la información proveniente de dos estrategias diferentes para la detección de malezas: sensores terrestres vs. aéreos. En general, las simulaciones con base en sensores terrestres resultaron en mayores ahorros de herbicidas que aquellas basadas en sensores aéreos. La magnitud de las reducciones en el uso de herbicidas derivadas de las aspersiones localizadas estuvieron directamente relacionadas a la densidad y la distribución espacial de cada especie de malezas. Los ahorros de herbicidas fueron potencialmente altos (hasta 66%) con especies de malezas relativamente esparcidas en patrones agregados (e.g., Sorghum halepense), pero fueron solamente moderados (10 a 20%) con especies de malezas abundantes y distribuidas en forma regular (e.g., Abutilon theophrasti). Sin embargo, el DT ha probado ser un factor clave, y DTs altos resultan en reducciones en el uso de herbicidas para todas las especies de malezas y todos los procedimientos y resoluciones de muestreo. Además al incrementar el DT de 6 a 12 plantas m−2 resultó en ahorros adicionales de herbicidas en hasta 50% en las simulaciones para S. halepense y hasta 28% de ahorros en las simulaciones para Xanthium strumarium. Sin embargo, como el DT determina la exactitud de la aspersión del agregado de malezas, las consecuencias de usar DTs altos podría ser el dejar áreas sin asperjar, lo que podría afectar adversamente los rendimientos de los cultivos y las infestaciones futuras de las malezas, incluyendo malezas resistentes a herbicidas. Considerando que la relación entre el DT y la exactitud de la aplicación del herbicida depende del patrón de distribución espacial de la malezas, este trabajo ha demostrado la posibilidad de usar valores más altos de DT en malezas con un patrón claro de distribución agregada al compararse con malezas distribuidas en forma regular.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Andrew Kniss, University of Wyoming.

References

Literature Cited

Ali, A, Streibig, JC, Christensen, S, Andreasen, C (2015) Image-based thresholds for weeds in maize fields. Weed Res 55: 2633 Google Scholar
Andújar, D, Barroso, J, Fernández-Quintanilla, C, Dorado, J (2012) Spatial and temporal dynamics of Sorghum halepense patches in maize crops. Weed Res 52: 411420 Google Scholar
Andújar, D, Ribeiro, A, Fernández-Quintanilla, C, Dorado, J (2011a) Accuracy and feasibility of optoelectronic sensors for weed mapping in wide row crops. Sensors 11: 23042318 Google Scholar
Andújar, D, Ribeiro, A, Fernández-Quintanilla, C, Dorado, J (2011b) Reliability and economic benefits of a visual system for detection of johnsongrass (Sorghum halepense) in corn. Weed Technol 25: 645651 Google Scholar
Andújar, D, Ribeiro, A, Fernández-Quintanilla, C, Dorado, J (2013) Herbicide savings and economic benefits of several strategies to control Sorghum halepense in maize crops. Crop Prot 50: 1723 Google Scholar
Backes, M, Schumacher, D, Plümer, L. (2005) The sampling problem in weed control—are currently applied sampling strategies adequate for site-specific weed control? Pages 155161 in Stafford, JV, ed. Precision Agriculture. Wageningen, Netherlands: Wageningen Academic Publishers Google Scholar
Bagavathiannan, MV, Norsworthy, JK (2012) Late-season seed production in arable weed communities: management implications. Weed Sci 60: 325334 Google Scholar
Barroso, J, Fernández-Quintanilla, C, Maxwell, BD, Rew, LJ (2004) Simulating the effects of weed spatial pattern and resolution of mapping and spraying on economics of site-specific management. Weed Res 44: 460468 Google Scholar
Berge, TW, Cederkvist, HR, Aastveit, AH, Fykse, H (2008) Simulating the effects of mapping and spraying resolution and threshold level on accuracy of patch spraying decisions and herbicide use based on mapped weed data. Acta Agric Scand Sect B-Soil Plant Sci 58: 216229 Google Scholar
Berge, TW, Fyske, H, Aastveit, AH (2007) Patch spraying of weeds in spring cereals: simulated influences of threshold level and spraying resolution on spraying errors and potential herbicide reduction. Acta Agric Scand Sect B-Soil Plant Sci 57: 212221 Google Scholar
Cardina, J, Johnson, GA, Sparrow, DH (1997) The nature and consequence of weed spatial distribution. Weed Sci 45: 364373 Google Scholar
Cardina, J, Regnier, E, Sparrow, D (1995) Velvetleaf (Abutilon theophrasti) competition and economic thresholds in conventional and no-tillage corn (Zea mays). Weed Sci 43: 8187 Google Scholar
Christensen, S, Søgaard, HT, Kudsk, P, Nørremark, M, Lund, I, Nadimi, ES, Jørgensen, R (2009) Site-specific weed control technologies. Weed Res 49: 233241 Google Scholar
Coble, HD, Mortensen, DA (1992) The threshold concept and its application to weed science. Weed Technol 61: 191195 Google Scholar
Cousens, R, Wallinga, J, Shaw, M (2004) Are the spatial patterns of weeds scale-invariant? Oikos 107: 251264 Google Scholar
Czapar, GF, Curry, MP, Wax, LM (1997) Grower acceptance of economic thresholds for weed management in Illinois. Weed Technol 11: 828831 Google Scholar
Dieleman, JA, Mortensen, DA (1999) Characterizing the spatial pattern of Abutilon theoprasti seedling patches. Weed Res 39: 455467 Google Scholar
Gerhards, R, Oebel, H (2006) Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Res 46: 185193 Google Scholar
Heijting, S, Kruijer, W, Stein, A, Van der Werf, W (2007) Testing the spatial significance of weed patterns in arable land using Mead's test. Weed Res 47: 396405 Google Scholar
Johnson, GA, Mortensen, DA, Gotway, CA (1996) Spatial and temporal analysis of weed seedling populations using geostatistics. Weed Sci 44: 704710 Google Scholar
Lamb, DW, Weedon, MM, Rew, LJ (1999) Evaluating the accuracy of mapping weeds in seedling crops using airborne digital imaging: Avena spp. in seedling triticale. Weed Res 39: 481492 Google Scholar
Longchamps, L, Panneton, B, Simard, MJ, Leroux, GD (2014) An imagery-based weed cover threshold established using expert knowledge. Weed Sci 62: 177185 Google Scholar
Martín, MP, Barreto, L, Fernández-Quintanilla, C (2011) Discrimination of sterile oat (Avena sterilis) in winter barley (Hordeum vulgare) using QuickBird satellite images. Crop Prot 30: 13631369 Google Scholar
McDonald, AJ, Riha, SJ (1999) Model of crop : weed competition applied to maize : Abutilon theophrasti interactions. II. Assessing the impact of climate: implications for economic thresholds. Weed Res 39: 371381 Google Scholar
Ngouajio, M, Lemieux, C, Fortier, JJ, Careau, D, Leroux, GD (1998) Validation of an operator-assisted module to measure weed and crop leaf cover by digital image analysis. Weed Technol 12: 446453 Google Scholar
Ngouajio, M, Lemieux, C, Leroux, GD (1999) Prediction of corn (Zea mays) yield loss from early observations of the relative leaf area and the relative leaf cover of weeds. Weed Sci 47: 297304 Google Scholar
Norsworthy, JK, Griffith, G, Griffin, T, Bagavathiannan, M, Gbur, EE (2014) In-field movement of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) and its impact on cotton lint yield: evidence supporting a zero-threshold strategy. Weed Sci 62: 237249 Google Scholar
Peteinatos, G, Weis, M, Andújar, D, Rueda Ayala, V, Gerhards, R (2014) Potential use of ground-based sensor technologies for weed detection. Pest Manag Sci 70: 190199 Google Scholar
Ritter, C (2008) Evaluation of Weed Populations under the Influence of Site-Specific Weed Control to Derive Decision Rules for a Sustainable Weed Management. Ph.D dissertation. Stuttgart, Germany: Universitat Hohenheim. 97 pGoogle Scholar
San Martín, C, Andújar, D, Fernández-Quintanilla, C, Dorado, J (2015) Spatial distribution patterns of weed communities in corn fields of central Spain. Weed Sci 63: 936945 Google Scholar
Simard, MJ, Panneton, B, Longchamps, L, Lemieux, C, Légère, A, Leroux, GD (2009) Validation of a management program based on a weed cover threshold model: effects on herbicide use and weed populations. Weed Sci 57: 187193 Google Scholar
Swanton, CJ, Weaver, S, Cowan, P, Van Acker, R, Deen, W, Shreshta, A (1999) Weed thresholds: theory and applicability. Pages 929 in Buhler, DD, ed. Expanding the Context of Weed Management. New York: Food Product Press Google Scholar
Thorp, KR, Tian, LF (2004) A review on remote sensing of weeds in agriculture. Precision Agric 5: 477508 Google Scholar
Weis, M, Gutjahr, C, Rueda-Ayala, V, Gerhards, R, Ritter, C, Schölderle, F (2008) Precision farming for weed management: techniques. Gesunde Pflanz 60: 171181 Google Scholar
Werner, EL, Curran, WS, Harper, JK, Roth, GW, Knievel, DP (2004) Velvetleaf (Abutilon theophrasti) interference and seed production in corn silage and grain. Weed Technol 18: 779783 Google Scholar
Wiles, LJ (2009) Beyond patch spraying: site-specific weed management with several herbicides. Precision Agric 10: 277290 Google Scholar
Wilkerson, GG, Wiles, LJ, Bennett, AC (2002) Weed management decision models: pitfalls, perceptions, and possibilities of the economic threshold approach. Weed Sci 50: 411424 Google Scholar
Williams, MM, Gerhards, R, Mortensen, DA (2000) Two-year weed seedling population responses to a post-emergent method of site-specific weed management. Precision Agric 2: 247263 Google Scholar
Wyse-Pester, DY, Wiles, LJ, Westra, P (2002) Infestation and spatial dependence of weed seedling populations in corn fields. Weed Sci 50: 5456 Google Scholar