Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T03:07:33.018Z Has data issue: false hasContentIssue false

Triclopyr Reduces Foliar Bleaching from Mesotrione and Enhances Efficacy for Smooth Crabgrass Control by Altering Uptake and Translocation

Published online by Cambridge University Press:  20 January 2017

Jialin Yu
Affiliation:
Crop and Soil Sciences Department, University of Georgia, Griffin, GA 30223
Patrick E. McCullough*
Affiliation:
Crop and Soil Sciences Department, University of Georgia, Griffin, GA 30223
*
Corresponding author's E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Turfgrass managers can reduce foliar bleaching of smooth crabgrass from mesotrione by tank-mixing triclopyr ester with applications. These tank mixtures also have potential to enhance smooth crabgrass control compared to mesotrione alone. The objectives of this research were to evaluate the influence of triclopyr on the efficacy, absorption, and translocation of mesotrione in multitiller smooth crabgrass. In field experiments, tank-mixing triclopyr at 560 or 1,120 g ae ha−1 with mesotrione at 140 g ai ha−1 applied sequentially or at 280 g ha−1 applied singly provided excellent control (> 90%) of multitiller smooth crabgrass in tall fescue. These treatments were more effective than mesotrione alone and fenoxaprop at 195 g ai ha−1 that averaged 66 and 81% control after 6 wk, respectively. Mesotrione alone at 280 g ha−1 bleached smooth crabgrass 53% at 2 wk after initial treatment (WAIT), and was 14% greater than the 140 g ha−1 treatment. Sequential treatments of the low mesotrione rate bleached smooth crabgrass 16 to 22% from 3 to 5 WAIT. Triclopyr tank mixtures reduced smooth crabgrass bleaching from mesotrione on all dates to < 5%. Tall fescue injury was not detected at any evaluation date. In laboratory experiments, smooth crabgrass reached peak foliar absorption of 14C-mesotrione at 24 and 168 h after treatment (HAT; 23% and 15%) when mesotrione was applied with triclopyr at 1,120 and 0 g ha−1, respectively. Triclopyr reduced translocation of radioactivity 12% at 72 and 168 HAT, compared to 14C-mesotrione alone. Enhanced foliar uptake of mesotrione from triclopyr tank mixtures might improve control of multitiller smooth crabgrass compared to mesotrione alone. Reduced foliar bleaching from triclopyr is associated with less translocation of mesotrione or derivatives in smooth crabgrass.

Profesionales en céspedes pueden reducir el blanqueamiento foliar de Digitaria ischaemum generado por la acción de mesotrione con aplicaciones de mezclas en tanque con triclopyr ester. Estas mezclas en tanque también tienen el potencial de mejorar el control de D. ischaemum al compararse con mesotrione solo. Los objetivos de esta investigación fueron evaluar la influencia de triclopyr sobre la eficacia, absorción, y translocación de mesotrione en D. ischaemum en el estadio de múltiples hijuelos. En experimentos de campo, las mezclas en tanque con triclopyr a 560 ó 1,120 g ae ha−1 con mesotrione a 140 g ai ha−1 aplicados secuencialmente o a 280 g ha−1 aplicados solos brindaron un control excelente (> 90%) de D. ischaemum en el estadio de hijuelos múltiples en el césped Festuca arundinacea. Estos tratamientos fueron más efectivos que mesotrione solo y fenoxaprop a 195 g ha−1, los cuales promediaron 66 y 81% de control después de 6 semanas, respectivamente. Mesotrione solo a 280 g ha−1 blanqueó D. ischaemum 53% a 2 semanas después del tratamiento inicial (WAIT), y fue 14% mayor que el tratamiento con 140 g ha−1. Los tratamientos secuenciales de la dosis baja de mesotrione blanquearon D. ischaemum 16 a 22% de 3 a 5 WAIT. Las mezclas en tanque con triclopyr redujeron el blanqueamiento de D. ischaemum causado por mesotrione a < 5%, en todas las fechas. No se detectó daño en F. arundinacea en ninguna fecha de evaluación. En los experimentos de laboratorio, D. ischaemum alcanzó un pico de absorción foliar de 14C-mesotrione a 24 y 168 h después del tratamiento (HAT; 23% y 15%) cuando mesotrione fue aplicado con triclopyr a 0 y 1,120 g ha−1, respectivamente. Triclopyr redujo la translocación de radioactividad 12% a 72 y 168 HAT, al compararse con 14C-mesotrione solo. La mejora en la absorción foliar de mesotrione con las mezclas en tanque con triclopyr podría mejorar el control de D. ischaemum en el estadio de múltiples hijuelos al compararse con mesotrione solo. La reducción en el blanqueamiento foliar producto de triclopyr está asociada con una menor translocación de mesotrione o sus derivados en D. ischaemum.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - SA
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons license is included and the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

Footnotes

Associate Editor for this paper: James Brosnan, University of Tennessee.

References

Literature Cited

Abdallah, I, Fischer, AJ, Elmore, CL, Saltveit, ME, Zaki, M (2006) Mechanism of resistance to quinclorac in smooth crabgrass (Digitaria ischaemum). Pestic Biochem Physiol 84:3848 Google Scholar
Abit, MJM, Al-Khatib, K (2009) Absorption, translocation, and metabolism of mesotrione in grain sorghum. Weed Sci 57:563566 Google Scholar
Anonymous (2008a) Tenacity Herbicide Label. Greensboro, NC: Syngenta Corp Protection, LLC. 8 pGoogle Scholar
Anonymous (2008b) Turflon Ester Herbicide Label. Indianapolis, IN: Dow AgroSciences, LLC. 3 pGoogle Scholar
Anonymous (2011) Acclaim Extra Herbicide Label. Research Triangle Park, NC: Bayer Crop Science. 3 pGoogle Scholar
Armel, GR, Mayonado, DJ, Hatzios, KK, Wilson, HP (2004) Absorption and translocation of SC-0051 in corn and soybean. Weed Technol 18:211214 Google Scholar
Armel, GR, Hall, GJ, Wilson, HP, Cullen, N (2005) Mesotrione plus atrazine mixtures for control of Canada thistle (Cirsium arvense). Weed Sci 53:202211 Google Scholar
Barnwell, P, Cobb, AH (1994) Graminicide antagonism by broadleaf weed herbicides. Pestic Sci 41:7785 Google Scholar
Bhowmik, PC (1987) Smooth crabgrass (Digitaria ischaemum) control in Kentucky bluegrass (Poa pratensis) turf with herbicides applied preemergence. Weed Technol 1:145148 Google Scholar
Bhowmik, PC, Bingham, SW (1990) Preemergence activity of dinitroaniline herbicides used for weed control in cool-season turfgrasses. Weed Technol 4:387393 Google Scholar
Brosnan, J, Breeden, G, Patton, A, Weisenberger, D (2013) Triclopyr reduces smooth crabgrass bleaching with topramezone without compromising efficacy. Appl: Turf Sci. DOI: Google Scholar
Callahan, LM (1986) Crabgrass and goosegrass control in a bentgrass green in the transition zone. Agron J 78:625628 Google Scholar
Croon, KA, Ketchersid, ML, Merkle, MG (1989) Effect of bentazon, imazaquin, and chlorimuron on the absorption and translocation of the methyl ester of haloxyfop. Weed Sci 37:645650 Google Scholar
DelRosario, D, Putnam, A (1973) Enhancement of foliar activity of linuron with carbaryl. Weed Sci 21:465468 Google Scholar
Dernoeden, PH, Carroll, MJ, Krouse, JM (1993) Weed management and tall fescue quality as influenced by mowing, nitrogen, and herbicides. Crop Sci 33:10551061 Google Scholar
Dernoeden, PH, Bigelow, CA, Kaminski, JE, Krouse, JM (2003) Smooth crabgrass control in perennial ryegrass and creeping bentgrass tolerance to quinclorac. HortScience 38:607612 Google Scholar
Derr, JF (2002) Detection of fenoxaprop-resistant smooth crabgrass (Digitaria ischaemum) in turf. Weed Technol 16:396400 Google Scholar
Goddard, MJ, Willis, JB, Askew, SD (2010) Application placement and relative humidity affects smooth crabgrass and tall fescue response to mesotrione. Weed Sci 58:6772 Google Scholar
Havaux, M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147151 Google Scholar
Hoyle, JA, Yelverton, FH, Gannon, TW (2013) Evaluating multiple rating methods utilized in turfgrass weed science. Weed Technol 27:362368 Google Scholar
Johnson, B (1975) Postemergence control of large crabgrass and goosegrass in turf. Weed Sci 23:404409 Google Scholar
Johnson, B (1976) Dates of herbicide application for summer weed control in turf. Weed Sci 24:422424 Google Scholar
Lee, DL, Prisbylla, MP, Cromartie, TH, Dagarin, DP, Howard, SW, Provan, WM, Ellis, MK, Fraser, T, Mutter, LC (1997) The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci 45:601609 Google Scholar
McCurdy, JD, McElroy, JS, Kopsell, DA, Sams, CE, Sorochan, JC (2008) Effects of mesotrione on perennial ryegrass (Lolium perenne L.) carotenoid concentrations under varying environmental conditions. J Agric Food Chem 56:91339139 Google Scholar
McElroy, JS, Breeden, GK (2007) Tolerance of turf-type tall fescue established from seed to postemergence applications of mesotrione and quinclorac. HortScience 42:382385 Google Scholar
Mitchell, G, Bartlett, DW, Fraser, TEM, Hawkes, TR, Holt, DC, Townson, JK, Wichert, RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:120128 Google Scholar
Shaw, DR, Wesley, MT (1993) Interacting effects on absorption and translocation from tank mixtures of ALS-inhibiting and diphenylether herbicides. Weed Technol 7:693698 Google Scholar
Siefermann-Harms, D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69:561568 Google Scholar
Trebst, A, Depka, B, Holländer-Czytko, H (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii . FEBS Lett 516:156160 Google Scholar
[US EPA] U.S. Environmental Protection Agency (2013) Pesticide Reregistration: Organic Arsenicals. http://www2.epa.gov/ingredients-used-pesticide-products/monosodium-methanearsonate-msma-organic-arsenical. Accessed December 7, 2015Google Scholar
Wehtje, GR, Wilcut, JW, McGuire, JA (1993) Absorption, translocation, and phytotoxicity of chlorimuron and 2, 4-DB mixtures in peanut (Arachis hypogaea) and selected weed species. Weed Sci 41:347352 Google Scholar
Wiecko, G, Couillard, A (1999) Sequential postemergence/preemergence treatments for crabgrass control in bermudagrass turf. J Environ Hortic 17:103106 Google Scholar