Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T19:07:25.947Z Has data issue: false hasContentIssue false

Tolerance of Three Clovers (Trifolium spp.) to Common Herbicides

Published online by Cambridge University Press:  20 January 2017

James D. McCurdy*
Affiliation:
Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762
J. Scott McElroy
Affiliation:
Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849
Michael L. Flessner
Affiliation:
Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
Jared A. Hoyle
Affiliation:
Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS 66506
Ethan T. Parker
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996
*
Corresponding author's E-mail: [email protected].

Abstract

Clover inclusion may increase the sustainability of certain low-maintenance turfgrasses. However, selective weed control within mixed turfgrass–clover swards proves problematic because of clover susceptibility to herbicides. Research was conducted to identify common turf herbicides that are tolerated by three Trifolium species, including white clover, ball clover, and small hop clover, within low-maintenance turfgrass. Leaf and flower density, as well as plant height, were measured 4 wk after treatment as indicators of clover response to 14 herbicides. The three Trifolium spp. were moderately tolerant of bentazon (< 35% decrease in leaf density, height, or flowering). Simazine was well tolerated by white clover (< 5% decrease in all response variables), yet moderate injury to ball clover and small hop clover was observed (> 32% decrease in leaf density and > 27% decrease in flower density). Pronamide was well tolerated by white and ball clovers, with no effect on measured response variables; however, pronamide decreased small hop clover height and flower density (38 and 42%, respectively). Imazethapyr and imazamox were moderately well tolerated by white clover and small hop clover (< 39% decrease by all response variables), yet ball clover may be more susceptible to these herbicides than was anticipated based on previously reported tolerance. The herbicides 2,4-DB, halosulfuron, and metribuzin were well tolerated by white clover, with no effect on measured response variables; however, results suggest ball and small hop clovers were less tolerant. Clopyralid, 2,4-D, glyphosate, imazaquin, metsulfuron-methyl, and nicosulfuron resulted in varying degrees of injury across clover species and response variables, but, in general, these herbicides may not be viable options when attempting to maintain any of the three clover species tested. Further research is needed to quantify long-term effects of herbicide application on sward composition and clover succession.

La inclusión de Trifolium podría incrementar la sostenibilidad de varios céspedes de bajo mantenimiento. Sin embargo, el control selectivo de malezas en mezclas de céspedes con Trifolium es problemático debido a la susceptibilidad de Trifolium a muchos herbicidas. Se realizó una investigación para identificar herbicidas comunes para céspedes que son tolerados por tres especies de Trifolium, incluyendo Trifolium repens, Trifolium nigrescens, y Trifolium dubium, en céspedes de bajo mantenimiento. La densidad de hojas y flores, al igual que la altura de planta, fueron medidas 4 semanas después del tratamiento, como indicadores de la respuesta de Trifolium a 14 herbicidas. Los tres Trifolium spp. fueron moderadamente tolerantes a bentazon (< 35% de disminución en densidad de hojas, altura, o floración). T. repens también toleró simazine (< 5% disminución en todas las variables de respuesta), aunque se observó un daño moderado en T. nigrescens y T. dubium (> 32% disminución en densidad de hojas y > 27% disminución en densidad de flores). Pronamide fue tolerado por T. repens y T. nigrescens, sin ningún efecto en las variables de respuesta medidas. Sin embargo, pronamide disminuyó la altura y densidad de flores de T. dubium (38 y 42%, respectivamente). Imazethapyr e imazamox fueron moderadamente tolerados por T. repens y T. dubium (< 39% disminución de todas las variables de respuesta), aunque T. nigrescens podría ser más susceptible a estos herbicidas que lo que se anticipó con base en reportes previos de tolerancia. Los herbicidas 2,4-DB, halosulfuron, y metribuzin fueron bien tolerados por T. repens, sin efectos en las variables de respuesta medidas. Sin embargo, los resultados sugieren que T. nigrescens y T. dubium fueron menos tolerantes. Clopyralid, 2,4-D, glyphosate, imazaquin, metsulfuron-methyl, y nicosulfuron resultaron en varios grados de daño entre las especies de Trifolium y las variables de respuesta, pero en general, estos herbicidas no serían opciones viables al tratar de mantener alguna de las especies de Trifolium evaluadas. Investigaciones adicionales son necesarias para cuantificar los efectos a largo plazo de la aplicación de herbicidas en la composición del césped y la sucesión de especies de Trifolium.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Jeffrey Derr, Virginia Tech.

References

Literature Cited

Abraham, CM, Held, DW, Wheeler, C (2010) Seasonal and diurnal activity of Larra bicolor (Hymenoptera: Crabronidae) and potential ornamental plants as nectar sources. Appl: Turf Sci. DOI: Google Scholar
Anonymous (2009a) Kerb® 50 WP herbicide product label. Indianapolis, IN: Dow AgroSciences. http://www.cdms.net/LDat/ld5TU000.pdf. Accessed August 13, 2015Google Scholar
Anonymous (2009b) Kerb® 50 WP specialty herbicide product label. Indianapolis, IN: Dow AgroSciences. http://www.cdms.net/ldat/ld5t2006.pdf. Accessed August 13, 2015Google Scholar
Anonymous (2011) Pursuit® herbicide product label. Research Triangle Park, NC: BASF Corporation. http://www.cdms.net/LDat/ld01S011.pdf. Accessed August 13, 2015Google Scholar
Anonymous (2014a) Princep® Liquid product label. Greensboro, NC: Syngenta Crop Protection. http://www.cdms.net/LDat/ld786000.pdf. Accessed August 13, 2015Google Scholar
Anonymous (2014b) Raptor® herbicide product label. Research Triangle Park, NC: BASF Corporation. http://www.cdms.net/LDat/ld20T013.pdf. Accessed August 13, 2015Google Scholar
Anonymous (2014c) Basagran® T&O herbicide product label. Research Triangle Park, NC: BASF Corporation. http://www.cdms.net/ldat/ldBUS000.pdf. Accessed August 13, 2015Google Scholar
Anonymous (2015) Basagran® herbicide product label., Cary, NC: Arysta LifeScience North America. http://www.cdms.net/LDat/ld89N004.pdf. Accessed August 13, 2015Google Scholar
Carlisle, RJ, Watson, VH, Cole, AW (1980) Canopy and chemistry of pasture weeds. Weed Sci 28:139142 Google Scholar
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences for combined analysis of experiments with two- or three-factor treatment designs. Agron J 81:665672 Google Scholar
Ceballos, R, Palma, G, Brevis, H, Ortega, F, Quiroz, A (2004) Effect of five postemergence herbicides on red clover shoot and root growth in greenhouse studies. Phytoprotection 85:153160 Google Scholar
Clark, SA, Mahanty, HK (1991) Influence of herbicides on growth and nodulation of white clover, Trifolium repens . Soil Biol Biochem 23:725730 Google Scholar
DiTomaso, JM (2000) Invasive weeds in rangelands: species, impacts, and management. Weed Sci 48:255265 Google Scholar
Dudeck, AE, Peacock, CH (1983) Rate, method, and time of overseeding white clover on bermudagrass during the winter. Proc Fla Hortic Soc 96:159161 Google Scholar
Enloe, SF, Johnson, J, Renz, M, Dorough, H, Tucker, K (2014) Hairy buttercup control and white clover tolerance to pasture herbicides. Forage Grazinglands 12(1) Google Scholar
Evers, GW, Grichar, WJ, Pohler, CL, Schubert, AM (1993) Tolerance of three annual forage legumes to selected postemergence herbicides. Weed Technol 7:735739 Google Scholar
Hawton, D, Johnson, IDG, Loch, DS, Harvey, GL, Marley, JMT, Hazard, WHL, Bibo, J, Walker, SR (1990) A guide to the susceptibility of some tropical crop and pasture weeds and the tolerance of some crop legumes to several herbicides. Trop Pest Manag 36:147150 Google Scholar
Ledgard, SF, Steele, KW (1992) Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 141:137153 Google Scholar
Lins, RD, Colquhoun, JB, Cole, CM, Mallory-Smith, CA (2005) Postemergence small broomrape (Orobanche minor) control in red clover. Weed Technol 19:411415 Google Scholar
Littell, RC, Milliken, GA, Stroup, WW, Wolfinger, RD, Schabenberger, O (2006) SAS® for Mixed Models. 2nd edn. Cary, NC: SAS Institute Inc. Pp 1556 Google Scholar
McCurdy, JD, McElroy, JS, Flessner, ML (2013) Differential response of four Trifolium species to common broadleaf herbicides: implications for mixed grass-legume swards. Weed Technol 27:123128 Google Scholar
McCurdy, JD, McElroy, JS, Guertal, EA, Wood, CW (2014) White clover inclusion within a bermudagrass lawn: effects of supplemental nitrogen on botanical composition and nitrogen cycling. Crop Sci 54:17961803 Google Scholar
McNeill, AM, Wood, M (1990) 15N estimates of nitrogen fixation by white clover (Trifolium repens L.) growing in a mixture with ryegrass (Lolium perenne L.). Plant Soil 128:265273 Google Scholar
Munshaw, G., Sparks, B, Williams, D, Barrett, M, Beasley, J, Woosley, P (2015) Pre-plant cultivation techniques and planting date effects on white clover establishment into an existing cool-season turfgrass sward. Hortscience 50:615620 Google Scholar
Roberts, RD, Bradshaw, AD (1985) The development of a hydraulic seeding technique for unstable sand slopes, II: field evaluation. J Appl Ecol 22:979994 Google Scholar
Rogers, ME, Potter, DA (2004) Potential for sugar sprays and flowering plants to increase parasitism of white grubs by tiphiid wasps (Hymenoptera: Tiphiidae). Environ Entomol 33:520527 Google Scholar
Seefeldt, SS, Stephens, JMC, Verkaaik, ML, Rahman, A (2005) Quantifying the impact of a weed in a perennial ryegrass-white clover pasture. Weed Sci 53:113120 Google Scholar
Sincik, M, Acikgoz, E (2007) Effects of white clover inclusion on turf characteristics, nitrogen fixation, and nitrogen transfer from white clover to grass species in turf mixtures. Commun Soil Sci Plant Anal 38:18611877 Google Scholar
Smith, AE, Powell, JD (1979) Herbicides for weed control during establishment of arrowleaf clover. Athens, Georgia: University of Georgia Research Report. Pages 324 pGoogle Scholar
Toler, JE, Willis, TG, Estes, AG, McCarty, LB (2007) Postemergent annual bluegrass control in dormant nonoverseeded bermudagrass turf. Hortscience 42:670672 Google Scholar
Whitehead, DC (1995). Grassland Nitrogen. Wallingford, U.K.: CAB International. Pp 397–117Google Scholar
Young, RR, Morthorpe, KJ, Croft, PH, Nico, H (1992) Differential tolerance of annual medics, Nungarin subterranean clover and hedge mustard to broadleaf herbicides. Aust J Exp Agric 32:4957 Google Scholar