Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T11:14:46.406Z Has data issue: false hasContentIssue false

Tolerance of Fresh-Market Tomato to Postemergence-Directed Imazosulfuron, Halosulfuron, and Trifloxysulfuron

Published online by Cambridge University Press:  20 January 2017

Katherine M. Jennings*
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
*
Corresponding author's E-mail: [email protected].

Abstract

A study was conducted to evaluate the effect of imazosulfuron, halosulfuron, and trifloxysulfuron POST-directed on six fresh-market tomato varieties. Injury 7 d after treatment (DAT) was 3% or less from all treatments, and no injury was observed 28 DAT. Imazosulfuron, halosulfuron, and trifloxysulfuron did not reduce yield relative to the nontreated check. There was no detectable herbicide effect on fruit shape and earliness. Data suggest that imazosulfuron, halosulfuron, and trifloxysulfuron can be applied POST-directed without negatively affecting yield or quality of several fresh-market tomato varieties.

Un estudio fue realizado para evaluar el efecto de imazosulfuron, halosulfuron, y trifloxysulfuron post-dirigido en seis variedades de tomate fresco para el mercado. El daño 7 días posteriores a la aplicación de los tratamientos (DAT) fue 3% o menos en todos los tratamientos y no fue observado ningún daño 28 DAT. El imazosulfuron, el halosulfuron, y el trifloxysulfuron no disminuyeron la producción en relación al testigo no tratado. No se detectó efecto de los herbicidas en la forma del fruto y su precocidad. La información sugiere que el imazosulfuron, el halosulfuron, y el trifloxysulfuron pueden ser aplicados de forma post-dirigida sin afectar negativamente el rendimiento ni la calidad de las distintas variedades de tomates frescos para el mercado.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, 1997. United States Standards for Fresh Market Tomatoes. Washington, DC: Fresh Products Branch, Fruit and Vegetable Division, Agricultural Marketing Service, U.S. Department of Agriculture. 10.Google Scholar
Bangarwa, S. K. and Norsworthy, J. K. 2008. Phenyl isothiocyanate as an alternative of methyl bromide for weed control in tomato and bell pepper production. Proc. South. Weed Sci. Soc 61:152.Google Scholar
Boydston, R. A. and Felix, J. 2008. Yellow nutsedge control in potato with imazosulfuron. Proc. West. Soc. Weed Sci 61:6.Google Scholar
Buckelew, J. K., Monks, D. W., and MacRae, A. W. 2004. Postdirected herbicide screen in plasticulture tomato. Proc. South. Weed Sci. Soc 57:140.Google Scholar
Calhoun, R. and Hathaway, A. 2007. Turfgrass weed control summary—yellow nutsedge Lansing, MI: Michigan State University. 3.Google Scholar
Csinos, A. S., Sumner, D. R., Johnson, W. C., McPherson, R. M., and Dowler, C. C. 2000. Methyl bromide alternatives in tobacco, tomato, and pepper transplant production. Crop Prot 19:3949.Google Scholar
Gilreath, J. P. and Santos, B. M. 2004a. Herbicide dose and incorporation depth in combination with 1,3-dichloropropene plus chloropicrin for Cyperus rotundus control in tomato and pepper. Crop Prot 23:205210.Google Scholar
Gilreath, J. P. and Santos, B. M. 2004b. Efficacy of methyl bromide alternatives on purple nutsedge control on tomato and pepper. Weed Technol 18:341345.Google Scholar
Henry, G. M. and Sladek, B. 2008. Control of yellow and purple nutsedge in bermudagrass with V-10142. In. Proceedings Celebrating the International Year of Planet Earth. Houston, TX: The Conference Exchange. 650–11.Google Scholar
Holmes, G. 2008. Southeastern U.S. Vegetable Crop Handbook Lincolnshire, IL: North Carolina Cooperative Extension Service. 260.Google Scholar
Johnson, W. C. and Mullinix, B. G. 2002. Weed management in watermelon (Citrullus lanatus) and cantaloupe (Cucumis melo) transplanted on polyethylene-covered seedbeds. Weed Technol 16:860866.Google Scholar
Locascio, S. J., Gilreath, J. P., Dickson, D. W., Kucharek, T. A., Jones, J. P., and Noling, J. W. 1997. Fumigant alternatives to methyl bromide for polyethylene-mulched tomato. Hortscience 32:12081211.Google Scholar
Lorenzi, H. J. and Jeffery, L. S. 1987. Weeds of the United States and their control. New York: Van Nostrand Reinhold. 64282.Google Scholar
Louws, F. J., Welker, R. M., Driver, J., Jennings, K., and Monks, D. W. 2006. Efficacy of methyl bromide alternatives for Verticillium and weed management in tomatoes. In. Proceedings of the International Research Conference on Methyl Bromide Alternatives and Emissions Reduction. Orlando, FL: Methyl Bromide Alternatives Outreach.Google Scholar
Maynard, D. N. and Hochmuth, G. J. 1997. Field planting. Pages 116119. in. Knott's Handbook for Vegetable Growers. New York: Wiley.Google Scholar
Morales-Payan, J. P., Santos, B. M., Stall, W. M., and Bewick, T. A. 1997. Effects of purple nutsedge (Cyperus rotundus) on tomato (Lycopersicon esculentus) and bell pepper (Capsicum annuum) vegetative growth and fruit yield. Weed Technol. 11:672676.Google Scholar
Pan, H. Y., Fisher, K. J., and Nichols, M. A. 1999. The effect of mulch and row covers on yield of processing tomatoes. Acta Hort. (ISHS) 487:145150.Google Scholar
Pekarek, R. 2008. Evaluation of a ‘Caliente’ Mustard Cover Crop, S-metolachlor, Imazosulfuron, and Thifensulfuron-Methyl for Weed Control in Bell Pepper. Raleigh, NC: North Carolina State University. 129.Google Scholar
Rankins, A. Jr., Evans, W. B., Shankle, M. W., and Cushman, K. E. 2004. Tolerance of selected tomato varieties to postemergence applications of Sandea. Proc. South. Weed Sci. Soc 57:141.Google Scholar
Sanders, D. C., Cook, W. P., and Granberry, D. 1996. Plasticulture for commercial vegetables. Raleigh, NC: North Carolina Cooperative Extension Service, North Carolina State University Pub. AG-489.Google Scholar
Santos, B. M., Gilreath, J. P., Motis, T. N., Noling, J. W., Jones, J. P., and Norton, J. A. 2006. Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. Crop Prot 25:690695.Google Scholar
Schultheis, J. R., Davis, J. M., Crozier, C. R., Hoyt, G. D., and Osmond, D. L. 2008. Lime and fertilizer suggestions for vegetable crops. 2008 North Carolina Agricultural Chemical Manual. http://ipm.ncsu.edu/agchem/4-toc.pdf. Accessed: December 10, 2008.Google Scholar
Stall, W. M. and Morales-Payan, J. P. 2003. The critical period of nutsedge interference in tomato. www.imok.ufl.eduliv/groups/IPM/weed_con/nutsedge.htm. Accessed: January 27, 2009.Google Scholar
Teasdale, J. R. and Colacicco, D. 1985. Weed control systems for fresh market tomato production on small farms. J. Am. Soc. Hortic. Sci 10:533537.Google Scholar
Watson, R. T., Albritton, D. T., Anderson, S. O., and Lee-Bapty, S. 1992. Methyl bromide: its atmospheric science, technology and economics. Nairobi, Kenya: Montreal Protocol Assessment Suppl., United Nations Environment Program. 234.Google Scholar
Webster, T. M., Csinos, A. S., Johnson, A. W., Dowler, C. C., Sumner, D. R., and Fery, R. L. 2001. Methyl bromide alternatives in a bell pepper–squash rotation. Crop Prot 20:605614.Google Scholar
Webster, T. M., Johnson, W. C. III, Dowler, C. C., Csinos, A. S., Johnson, A. W., and Sumner, D. R. 2000. Vegetable weed management using alternatives to methyl bromide. Proc. South. Weed Sci. Soc 53:61.Google Scholar
Wien, H. C. and Minotti, P. L. 1987. Growth, yield, and nutrient uptake of transplanted fresh-market tomatoes as affected by plastic mulch and initial nitrogen rate. J. Am. Soc. Hortic. Sci 112:759763.Google Scholar
Wien, H. C. and Minotti, P. L. 1988. Increasing yield of tomatoes with plastic mulch and apex removal. J. Am. Soc. Hortic. Sci 113:342347.Google Scholar