Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T09:58:31.806Z Has data issue: false hasContentIssue false

Temperature and Relative Humidity Affect Weed Response to Vinegar and Clove Oil

Published online by Cambridge University Press:  20 January 2017

Daniel C. Brainard*
Affiliation:
Department of Horticulture, Michigan State University, A440 Plant and Soil Science Building, East Lansing, MI 48824
William S. Curran
Affiliation:
Department of Plant Science, The Pennsylvania State University, 423 Agricultural Sciences and Industries Building, University Park, PA, 16802
Robin R. Bellinder
Affiliation:
Department of Horticulture, Cornell University, 164 Plant Science Building, Ithaca, NY, 14850
Mathieu Ngouajio
Affiliation:
Department of Horticulture, Michigan State University, A440 Plant and Soil Science Building, East Lansing, MI 48824
Mark J. VanGessel
Affiliation:
Department of Plant and Soil Sciences, University of Delaware, 16684 County Seat Highway, Georgetown, DE, 19947
Milton J. Haar
Affiliation:
Badlands National Park, 25216 Ben Reifel Rd., Interior, SD, 57750
W. Thomas Lanini
Affiliation:
Department of Plant Sciences, University of California at Davis, One Shields Avenue, 278 Robbins Hall, Davis, CA 95616
John B. Masiunas
Affiliation:
Department of Crop Sciences, University of Illinois, 260 E R Madigan Laboratory, 1201 W. Gregory Dr., Urbana, IL 61801
*
Corresponding author's E-mail: [email protected]

Abstract

Nonsynthetic herbicides offer a potentially useful addition to the suite of weed management tools available to organic growers, but limited information is available to guide the optimal use of these products. The objectives of this research were to (1) evaluate the efficacy of clove oil– and vinegar-based herbicides on weeds across multiple states, and (2) assess the potential role of temperature, relative humidity (RH), and cloud cover in explaining inter-state variations in results. From 2006 to 2008, a total of 20 field trials were conducted in seven states using an identical protocol. Seeds of brown mustard were sown and herbicides applied to both mustard and emerged weeds when mustard reached the three- to four-leaf stage. Treatments included clove oil at 2.5, 5, 7.5, and 10% v/v concentrations at 54 L ha−1, and vinegar at 5, 10, 15, and 20% v/v concentrations at 107 L ha−1. Results varied widely across trials. In general, concentrations of at least 7.5% for clove oil and 15% for vinegar were needed for adequate control of mustard. Both products were more effective at suppressing mustard than Amaranthus spp. or common lambsquarters. Poor control was observed for annual grasses. No significant effects of cloud cover on the efficacy of either product were detected. In contrast, RH was positively correlated with control of brown mustard by both clove oil and vinegar with improved control at higher RH. Temperature had no detectable effect on the efficacy of clove oil, but higher temperatures improved control of brown mustard by vinegar.

Herbicidas no-sintéticos ofrecen potencialmente una adición útil a la variedad de herramientas para el manejo de malezas, disponible para productores orgánicos. Sin embargo, hay poca información disponible para guiar el uso óptimo de estos productos. Los objetivos de esta investigación fueron (1) evaluar, en diferentes estados, la eficacia de herbicidas a base de aceite de trébol y de vinagre sobre malezas, y (2) evaluar el papel potencial de la temperatura, humedad relativa (RH), y la cobertura nubosa para explicar variaciones inter-estatales en los resultados. De 2006 a 2008, un total de 20 experimentos de campo fueron realizados en siete estados usando un protocolo idéntico. Semillas de mostaza (Brassica juncea) fueron sembradas y los herbicidas aplicados a la mostaza y malezas emergidas cuando la mostaza alcanzó el estado de desarrollo de tres a cuatro hojas. Los tratamientos incluyeron aceite de trébol a concentraciones de 2.5, 5, 7.5 y 10% v/v a 54 L ha−1, y vinagre a concentraciones de 5, 10, 15 y 20% v/v a 107 L ha−1. Los resultados variaron ampliamente entre experimentos. En general, concentraciones de al menos 7.5% para el aceite de trébol y 15% para el vinagre fueron necesarias para el control adecuado de la mostaza. Ambos productos fueron más efectivos para suprimir la mostaza que Amaranthus spp. o Chenopodium album. Se observó un control pobre de gramíneas anuales. No se detectaron efectos significativos de la cobertura nubosa sobre la eficacia de ninguno de los productos. En cambio, la RH estuvo positivamente correlacionada con el control de la mostaza por el aceite de trébol y el vinagre con un mejor control a RH más altas. La temperatura no tuvo efectos detectables sobre la eficacia del aceite de trébol, pero las temperaturas altas mejoraron el control de la mostaza con vinagre.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adkins, S. W., Tanpipat, S., Swarbrick, J. T., and Boersma, M. 1998. Influence of environmental factors on glyphosate efficacy when applied to Avena fatua or Urochloa panicoides . Weed Res. 38 :129138.Google Scholar
Anderson, D. M., Swanton, C. J., Hall, J. C., and Mersey, B. G. 1993. The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium. Weed Res. 33 :139147.Google Scholar
Anonymous. 2012. OMRI Products List. Organic Materials Review Institute. http://www.omri.org/omri-lists. Accessed: November 13, 2012.Google Scholar
Bainard, L. D., Isman, M. B., and Upadhyaya, M. K. 2006. Phytotoxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Sci. 54 :833837.Google Scholar
Bond, W. and Grundy, A. C. 2001. Non-chemical weed management in organic farming systems. Weed Res. 41 :383405.Google Scholar
Chandran, R. S. 2003. Evaluation of vinegar and corn gluten for weed control in field-grown sweet pepper. Proc. Northeast. Weed Sci. Soc. 57 :65.Google Scholar
Chandran, R. S., Stenger, M., and Mandal, M. 2003. Effect of vinegar on potato weed control. Proc. Northeast. Weed Sci. Soc. 58 :82.Google Scholar
Curran, W. S., Lingenfelter, D. D., and Muse, C. B. 2003. Vinegar and clove oil for non-selective control of annual weeds. Proc. Northeast. Weed Sci. Soc. 88 :21.Google Scholar
Evans, G. J. and Bellinder, R. R. 2009. The potential use of vinegar and a clove oil herbicide for weed control in sweet corn, potato, and onion. Weed Technol. 23 :120128.Google Scholar
Ferguson, J. J. 2004. Evaluation of organic herbicides. HortScience 39 :876.Google Scholar
Georgis, R. 2003. Efficacy and speed of control of Matran 2 with humasol and stylet oil against eight weed species under field conditions. Elmhurst, IL AgroSci Advanced Agricultural Technologies Rep. 866. 26.Google Scholar
Goddard, M.J.R., Willis, J. B., and Askew, S. D. 2010. Application placement and relative humidity affects smooth crabgrass and tall fescue response to mesotrione. Weed Technol. 58 :6772.Google Scholar
Hammerton, J. L. 1967. Environmental factors and susceptibility to herbicides. Weeds 15 :330336.Google Scholar
Johnson, B. C. and Young, B. G. 2002. Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Sci. 50 :157161.Google Scholar
Johnson, E. N., Wolf, T. M., Caldwell, B. C., Barbour, R., Holm, R. and Sapsford, K. 2004. Efficacy of vinegar (acetic acid) as an organic herbicide. Final Report. Saskatchewan Agricultural Development Fund Project Number 20020202. Pp 59.Google Scholar
Jordan, T. N. 1977. Effects of temperature and relative humidity on the toxicity of glyphosate to bermudagrass (Cynodon dactylon). Weed Sci. 25 :448451.Google Scholar
Kells, J. J., Meggitt, W. F., and Penner, D. 1984. Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci. 32 :143149.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21 :840848.Google Scholar
McWhorter, C. G. and Azlin, W. R. 1978. Effects of environment on the toxicity of glyphosate to johnsongrass (Sorghum halapense) and soybeans (Glycine max). Weed Sci. 26 :605608.Google Scholar
[MNDOA] Minnesota Department of Agriculture. 2010. Status of Organic Agriculture in Minnesota: A Report to the Minnesota Legislature. http://archive.leg.state.mn.us/docs/2007/mandated/070191.pdf. Accessed: November 14, 2012.Google Scholar
Radhakrishnan, J., Teasdale, J. R., and Coffman, C. B. 2002. Vinegar as a potential herbicide for organic agriculture. Proc. Northeast. Weed Sci. Soc. 56 :100.Google Scholar
Radhakrishnan, J., Teasdale, J. R., and Coffman, C. B. 2003. Agricultural applications of vinegar. Proc. Northeast. Weed Sci. Soc. 57 :6364.Google Scholar
SAS Institute. 2009. SAS User's Guide: Statistics. Cary, NC : SAS Institute. 1030 p.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose response relationship. Weed Technol. 9 :218227.Google Scholar
Tanpipat, S., Adkins, S. W., Swarbrick, J. T., and Boersma, M. 1997. Influence of selected environmental factors on glyphosate efficacy when applied to awnless barnyard grass (Echinochloa colona (L.) Link). Aust. J. Agric. Res. 48 :695702.Google Scholar
Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50 : 425431.Google Scholar
Walz, E. 1999. Final Results of the Third Biennial National Organic Farmers' Survey, Santa Cruz CA : Organic Farming Research Foundation. 126 p.Google Scholar
Waltz, A. L., Martin, A. R., Roeth, F. W., and Lindquist, J. L. 2004. Glyphosate efficacy on velvetleaf varies with application time of day. Weed Technol. 18 :931939.Google Scholar
Wills, G. D. 1984. Toxicity and translocation of sethoxydim in bermudagrass (Cynodon dactylon) as affected by environment. Weed Sci. 29 :397401.Google Scholar