Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T14:10:48.206Z Has data issue: false hasContentIssue false

Tall Morningglory (Ipomoea purpurea) Seedbank Density Effects on Pendimethalin Control Outcomes

Published online by Cambridge University Press:  20 January 2017

Brian J. Schutte*
Affiliation:
Department of Entomology, Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003
Ashley Cunningham
Affiliation:
Department of Entomology, Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003
*
Corresponding author's E-mail: [email protected].

Abstract

Pendimethalin control failures on tall morningglory are critical shortcomings in weed-control programs for chile pepper in New Mexico. Using weed seedbank augmentation, we conducted a field study to (1) determine if pendimethalin control of tall morningglory is affected by tall morningglory seedbank density, and (2) identify weed community factors that influence labor for removing the tall morningglory plants that escape pendimethalin. The field study was complemented with a growth chamber study conducted to clarify the effects of pendimethalin rate on the putative association between tall morningglory seedbank density and pendimethalin control outcomes. Under field conditions and after square-root transformation of the dependent variable, the effects of seedbank density on seedling escape density were described with natural logarithmic functions. Although pendimethalin control of tall morningglory decreased with increasing seedbank density, seedbank additions increased labor requirements for removing tall morningglory at only a site-year characterized by low population densities in the indigenous weed community. In growth chambers, increasing pendimethalin rate negatively influenced the effects of increasing seedbank density on pendimethalin control failures. This study shows that pendimethalin control of tall morningglory is reduced when seedbank densities of this species are high. Knowledge of seedbank density effects on specific control outcomes may influence grower attitudes on management strategies that target weed seedbanks.

Fallas en el control de Ipomoea purpurea con pendimethalin son limitantes críticas en los programas de control de malezas en pimiento en New Mexico. Usando una argumentación basada en banco de semillas de malezas, realizamos un estudio de campo para: 1) determinar si el control con pendimethalin de I. purpurea es afectado por la densidad del banco de semillas de esta maleza, e 2) identificar los factores de la comunidad de malezas que influencian la labor de remoción de plantas de I. purpurea que escapan a pendimethalin. El estudio de campo fue complementado con un estudio en una cámara de crecimiento realizado para aclarar los efectos de la dosis de pendimethalin sobre la asociación putativa entre la densidad del banco de semillas de I. purpurea y los resultados del control con pendimethalin. Bajo condiciones de campo y después de transformar con raíz cuadrada la variable dependiente, los efectos de la densidad del banco de semillas sobre la densidad de escapes de plántulas fue descrita con funciones logarítmicas naturales. Aunque el control de I. purpurea con pendimethalin disminuyó con el aumento de la densidad del banco de semillas, adiciones al banco de semillas aumentaron los requerimientos de labranza para remover I. purpurea en solamente un sitio-año, el cual estuvo caracterizado por densidades de población bajas en la comunidad indígena de malezas. En las cámaras de crecimiento, el aumentar la dosis de pendimethalin influenció negativamente los efectos de incrementos en la densidad del banco de semillas sobre las fallas en el control con pendimethalin. Este estudio muestra que el control de I. purpurea con pendimethalin se reduce cuando las densidades del banco de semillas de esta especie son altas. Este conocimiento de los efectos de la densidad del banco de semillas sobre los resultados específicos del control podría influenciar las actitudes de los productores sobre las estrategias de manejo que se enfocan en los bancos de semillas de malezas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Randy L. Anderson, USDA-ARS.

References

Literature Cited

Baskin, CC, Baskin, JM (2014) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. New York: Elsevier. 1600 pGoogle Scholar
Besag, J. Kempton (1986) Statistical analysis of field experiments using neighboring plots. Biometrics 42:231251 Google Scholar
Boyd, NS, Van Acker, RC (2003) The effects of depth and fluctuating soil moisture on the emergence of eight annual and six perennial plant species. Weed Sci 51:725730 Google Scholar
Burnside, OC, Wilson, RG, Weisberg, S, Hubbard, KG (1996) Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci 44:7486 Google Scholar
Caldwell, B, Mohler, CL (2001) Stale seedbed practices for vegetable production. Hortscience 36:703705 Google Scholar
Crowley, RH, Buchanan, GA (1982) Variations in seed production and the response to pests of morningglory (Ipomoea) species and small-flower morningglory (Jacquemontia tamnifolia). Weed Sci 30:187190 Google Scholar
Davis, AS, Renner, KA (2007) Influence of seed depth and pathogens on fatal germination of velvetleaf (Abutilon theophrasti) and giant foxtail (Setaria faberi). Weed Sci 55:3035 Google Scholar
Dekker, J (2003) The foxtail (Setaria) species-group. Weed Sci 51:641656 Google Scholar
Egley, GH (1983) Weed seed and seedling reductions by soil solarization with transparent polyethylene sheets. Weed Sci 31:404409 Google Scholar
Grey, TL, Wehtje, GR (2005) Residual herbicide weed control systems in peanut. Weed Technol 19:560567 Google Scholar
Hoffman, DW, Lavy, TL (1978) Plant competition for atrazine. Weed Sci 26:9499 Google Scholar
Kapusta, G, Krausz, RF, Matthews, JL (1993) Mon-13200 early preplant controls giant foxtail (Setaria faberi) season-long in no-till soybean (Glycine max). Weed Technol 7:872878 Google Scholar
Kegode, GO, Forcella, F, Clay, S (1999) Influence of crop rotation, tillage, and management inputs on weed seed production. Weed Sci 47:175183 Google Scholar
Lee, RD, Schroeder, J. 1995. Weed Management in Chile. New Mexico State University Agricultural Experiment Station Circular 548 Google Scholar
Llewellyn, RS, Pannell, DJ, Lindner, RK, Powles, SB (2005) Targeting key perceptions when planning and evaluating extension. Aust J Exp Agric 45:16271633 Google Scholar
Nadeau, LB, Morrison, IN (1986) Influence of soil moisture on shoot and root growth of green and yellow foxtail (Setaria viridis and Setaria lutescens). Weed Sci 34:225232 Google Scholar
Peruzzi, A, Raffaelli, M, Frasconi, C, Fontanelli, M, Barberi, P (2012) Influence of an injection system on the effect of activated soil steaming on Brassica juncea and the natural weed seedbank. Weed Res 52:140152 Google Scholar
Peters, J 2000. Tetrazolium Testing Handbook. Contrib. No. 29 to the Handbook on Seed Testing. Lincoln, NE: Association of Official Seed Analysts. Pp 121 Google Scholar
Sanogo, S, Etarock, BF, Clary, M (2009) Recovery of Verticillium dahliae from tall morningglory (Ipomoea purpurea) in New Mexico and its pathogenicity on chile pepper. Plant Dis 93:428428 Google Scholar
Schabenberger, O, Pierce, FJ (2002) Contemporary Statistical Models for the Plant and Soil Sciences. New York: CRC Press. 790 pGoogle Scholar
Schroeder, J, Ashigh, J, Fiore, C (2010) Weed Science Field Research Report. Department of Entomology, Plant Pathology and Weed Science. New Mexico State University. Available at http://eppws.nmsu.edu/research-programsreports/. Accessed December 20, 2014Google Scholar
Shaner, D, Jachetta, J, Senseman, S, Burke, I, Hanson, B, Jugulam, M, Tan, S, Glenn, B, Turner, P (2014) Herbicide Handbook. 10th edn. Lawrence, KS: Weed Science Society of America Google Scholar
Singh, M, Ramirez, AHM, Sharma, SD, Jhala, AJ (2012) Factors affecting the germination of tall morningglory (Ipomoea purpurea). Weed Sci 60:6468 Google Scholar
Sparks, OC, Barrentine, JL, Burgos, NR, McClelland, MR (2004) Effect of Palmer amaranth (Amaranthus palmeri) seedbank density on the performance of pendimethalin and fluometuron. in Oosterhuis, DM, ed. Summaries of Arkansas Cotton Research 2003. Fayetteville, AR: Arkansas Agricultural Experiment Station, University of Arkansas Google Scholar
Taylor, KL, Hartzler, RG (2000) Effect of seed bank augmentation on herbicide efficacy. Weed Technol 14:261267 Google Scholar
Walsh, M, Newman, P (2007) Burning narrow windrows for weed seed destruction. Field Crop Res 104:2430 Google Scholar
Walsh, M, Newman, P, Powles, S (2013) Targeting weed seeds in-crop: a new weed control paradigm for global agriculture. Weed Technol 27:431436 Google Scholar
Wilcut, JW, Jordan, DL, Vencill, WK, Richburg, JS (1997) Weed management in cotton (Gossypium hirsutum) with soil-applied and post-directed herbicides. Weed Technol 11:221226 Google Scholar
Winkle, ME, Leavitt, JRC, Burnside, OC (1981) Effects of weed density on herbicide absorption and bioactivity. Weed Sci 29:405409 Google Scholar
Zar, JH (1999) Biostatistical Analysis. 4th edn. Upper Saddle River, NJ: Prentice Hall. 663 pGoogle Scholar